Donghan Shao, Xinyu Pei, Yuqin Ma, Sainan Liu, Wenliang Li, Leijiao Li and Ping’an Ma
{"title":"具有双模ROS生成的金属化空心cof纳米碗用于癌症声动力治疗","authors":"Donghan Shao, Xinyu Pei, Yuqin Ma, Sainan Liu, Wenliang Li, Leijiao Li and Ping’an Ma","doi":"10.1039/D5TB00338E","DOIUrl":null,"url":null,"abstract":"<p >Sonodynamic therapy (SDT) has emerged as an encouraging route in tumor treatment, due to its exceptional tissue penetration depth and favorable safety profile. Nevertheless, the clinical translation of conventional organic sonosensitizers is hindered by intrinsic limitations, including pronounced hydrophobicity, insufficient chemical stability, and low reactive oxygen species (ROS) production. In contrast, hollow covalent organic frameworks (HCOFs) exhibit exceptional cargo-loading capabilities, structural robustness, and biocompatibility, positioning them as ideal nanoplatforms for advanced therapeutic applications. Herein, we engineered a bowl-shaped HCOF architecture designed to amplify ultrasonic cavitation effects. This nanostructure was subsequently functionalized with the sonosensitizer (Hemin) and subjected to strategic metallization <em>via</em> metal ion incorporation, culminating in the development of a high-efficiency antitumor nanosystem (FeHHCA). FeHHCA can achieve dual-mode ROS generation, namely, sonodynamic synergistically generating <small><sup>1</sup></small>O<small><sub>2</sub></small> and being specifically activated by a tumor microenvironment (TME) to generate ˙OH through a Fenton-like reaction, achieving an 78.7% tumor inhibition rate <em>in vivo</em>. These findings offer innovative approaches and strategies for the design of hollow COFs and offer great potential for the application of SDT in cancer treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 17","pages":" 5181-5189"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallized hollow-COF nanobowls with dual-mode ROS generation for cancer sonodynamic therapy†\",\"authors\":\"Donghan Shao, Xinyu Pei, Yuqin Ma, Sainan Liu, Wenliang Li, Leijiao Li and Ping’an Ma\",\"doi\":\"10.1039/D5TB00338E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sonodynamic therapy (SDT) has emerged as an encouraging route in tumor treatment, due to its exceptional tissue penetration depth and favorable safety profile. Nevertheless, the clinical translation of conventional organic sonosensitizers is hindered by intrinsic limitations, including pronounced hydrophobicity, insufficient chemical stability, and low reactive oxygen species (ROS) production. In contrast, hollow covalent organic frameworks (HCOFs) exhibit exceptional cargo-loading capabilities, structural robustness, and biocompatibility, positioning them as ideal nanoplatforms for advanced therapeutic applications. Herein, we engineered a bowl-shaped HCOF architecture designed to amplify ultrasonic cavitation effects. This nanostructure was subsequently functionalized with the sonosensitizer (Hemin) and subjected to strategic metallization <em>via</em> metal ion incorporation, culminating in the development of a high-efficiency antitumor nanosystem (FeHHCA). FeHHCA can achieve dual-mode ROS generation, namely, sonodynamic synergistically generating <small><sup>1</sup></small>O<small><sub>2</sub></small> and being specifically activated by a tumor microenvironment (TME) to generate ˙OH through a Fenton-like reaction, achieving an 78.7% tumor inhibition rate <em>in vivo</em>. These findings offer innovative approaches and strategies for the design of hollow COFs and offer great potential for the application of SDT in cancer treatment.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 17\",\"pages\":\" 5181-5189\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00338e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00338e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Metallized hollow-COF nanobowls with dual-mode ROS generation for cancer sonodynamic therapy†
Sonodynamic therapy (SDT) has emerged as an encouraging route in tumor treatment, due to its exceptional tissue penetration depth and favorable safety profile. Nevertheless, the clinical translation of conventional organic sonosensitizers is hindered by intrinsic limitations, including pronounced hydrophobicity, insufficient chemical stability, and low reactive oxygen species (ROS) production. In contrast, hollow covalent organic frameworks (HCOFs) exhibit exceptional cargo-loading capabilities, structural robustness, and biocompatibility, positioning them as ideal nanoplatforms for advanced therapeutic applications. Herein, we engineered a bowl-shaped HCOF architecture designed to amplify ultrasonic cavitation effects. This nanostructure was subsequently functionalized with the sonosensitizer (Hemin) and subjected to strategic metallization via metal ion incorporation, culminating in the development of a high-efficiency antitumor nanosystem (FeHHCA). FeHHCA can achieve dual-mode ROS generation, namely, sonodynamic synergistically generating 1O2 and being specifically activated by a tumor microenvironment (TME) to generate ˙OH through a Fenton-like reaction, achieving an 78.7% tumor inhibition rate in vivo. These findings offer innovative approaches and strategies for the design of hollow COFs and offer great potential for the application of SDT in cancer treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices