Wouter P. van den Akker, Levena Gascoigne, Alexander B. Cook, Rolf A. T. M. van Benthem, Ilja K. Voets and Jan C. M. van Hest
{"title":"纳米反应器渗透率的光激活时空控制","authors":"Wouter P. van den Akker, Levena Gascoigne, Alexander B. Cook, Rolf A. T. M. van Benthem, Ilja K. Voets and Jan C. M. van Hest","doi":"10.1039/D4TB02304H","DOIUrl":null,"url":null,"abstract":"<p >Interactive materials can be responsive to a variety of stimuli, such as pH, redox, or light. Actuation with light offers excellent spatiotemporal control. Furthermore, it has the advantage that no waste is produced during the light activation process. Herein, we present a strategy to regulate the permeability of pH-responsive nanoreactors using a spiropyran photoacid. Upon light illumination, the photoacid drastically reduced the pH of the environment, which caused the nanoreactor to become permeable. Encapsulation of an enzyme within these nanoreactors therefore allowed for light-induced enzymatic conversion of substrate, and longer irradiation times resulted in an increase in product. Additionally, apart from temporal control, we showed that immobilization of the nanoreactors into a hydrogel matrix also allowed for excellent spatial control. By using a photomask approach, we demonstrated that only in illuminated regions of the hydrogel substrate was converted, due to the local activation of the nanoreactors. Furthermore, this approach could also be applied with higher resolution using confocal microscopy. Irradiating targeted areas with a 480 nm laser line allowed for photoisomerization of the spiropyran, simultaneously inducing permeability. This approach yields high-resolution spatial control over nanoreactor permeability and could potentially be utilized in controlled local synthesis of products or drug release.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 17","pages":" 5171-5180"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d4tb02304h?page=search","citationCount":"0","resultStr":"{\"title\":\"Light-activated spatiotemporal control over nanoreactor permeability†\",\"authors\":\"Wouter P. van den Akker, Levena Gascoigne, Alexander B. Cook, Rolf A. T. M. van Benthem, Ilja K. Voets and Jan C. M. van Hest\",\"doi\":\"10.1039/D4TB02304H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Interactive materials can be responsive to a variety of stimuli, such as pH, redox, or light. Actuation with light offers excellent spatiotemporal control. Furthermore, it has the advantage that no waste is produced during the light activation process. Herein, we present a strategy to regulate the permeability of pH-responsive nanoreactors using a spiropyran photoacid. Upon light illumination, the photoacid drastically reduced the pH of the environment, which caused the nanoreactor to become permeable. Encapsulation of an enzyme within these nanoreactors therefore allowed for light-induced enzymatic conversion of substrate, and longer irradiation times resulted in an increase in product. Additionally, apart from temporal control, we showed that immobilization of the nanoreactors into a hydrogel matrix also allowed for excellent spatial control. By using a photomask approach, we demonstrated that only in illuminated regions of the hydrogel substrate was converted, due to the local activation of the nanoreactors. Furthermore, this approach could also be applied with higher resolution using confocal microscopy. Irradiating targeted areas with a 480 nm laser line allowed for photoisomerization of the spiropyran, simultaneously inducing permeability. This approach yields high-resolution spatial control over nanoreactor permeability and could potentially be utilized in controlled local synthesis of products or drug release.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 17\",\"pages\":\" 5171-5180\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d4tb02304h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02304h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02304h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Light-activated spatiotemporal control over nanoreactor permeability†
Interactive materials can be responsive to a variety of stimuli, such as pH, redox, or light. Actuation with light offers excellent spatiotemporal control. Furthermore, it has the advantage that no waste is produced during the light activation process. Herein, we present a strategy to regulate the permeability of pH-responsive nanoreactors using a spiropyran photoacid. Upon light illumination, the photoacid drastically reduced the pH of the environment, which caused the nanoreactor to become permeable. Encapsulation of an enzyme within these nanoreactors therefore allowed for light-induced enzymatic conversion of substrate, and longer irradiation times resulted in an increase in product. Additionally, apart from temporal control, we showed that immobilization of the nanoreactors into a hydrogel matrix also allowed for excellent spatial control. By using a photomask approach, we demonstrated that only in illuminated regions of the hydrogel substrate was converted, due to the local activation of the nanoreactors. Furthermore, this approach could also be applied with higher resolution using confocal microscopy. Irradiating targeted areas with a 480 nm laser line allowed for photoisomerization of the spiropyran, simultaneously inducing permeability. This approach yields high-resolution spatial control over nanoreactor permeability and could potentially be utilized in controlled local synthesis of products or drug release.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices