用于增强透皮给药的氰钴胺负载溶解微针:开发、表征和药代动力学评价

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mousam Bhowmik, Rajamma A. J., Sateesha S. B., Chandan R. S., Girija E. K., Punith M, Ebna Azizal Omar, Rajesh R
{"title":"用于增强透皮给药的氰钴胺负载溶解微针:开发、表征和药代动力学评价","authors":"Mousam Bhowmik,&nbsp;Rajamma A. J.,&nbsp;Sateesha S. B.,&nbsp;Chandan R. S.,&nbsp;Girija E. K.,&nbsp;Punith M,&nbsp;Ebna Azizal Omar,&nbsp;Rajesh R","doi":"10.1007/s10544-025-00747-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrates cyanocobalamin-loaded dissolving microneedles (CNBL-MNs) as a minimally invasive transdermal solution for managing cyanocobalamin (CNBL) deficiency, offering an alternative to intramuscular injections and oral supplements. The CNBL-MNs were developed using biodegradable, water-soluble polymers such as polyvinylpyrrolidone K25, Dextran K40, and chitosan to ensure controlled and gradual release of the CNBL. The formulation’s stability and integrity were assessed through FTIR and XRD analyses. SEM imaging revealed well-formed microneedles with a height of 800 μm, a 200 μm base diameter, and a 500 μm pitch. EDS confirmed the successful incorporation of CNBL in the microneedle array. The Parafilm<sup>®</sup> membrane insertion test revealed that the microneedles had strong mechanical properties and achieved 100% penetration efficiency. The microneedle array also demonstrated excellent (<i>P</i> &gt; 0.05) flexibility and structural stability. Ex-vivo release studies showed that 88.51% of the CNBL was released over 48 h, following a first-order kinetic model. The <i>n</i> value of 0.51 for Korsmeyer-Peppas model indicate an anomalous transport mechanism, suggesting a combination of diffusion and erosion. The in-vivo pharmacokinetic evaluation in Wistar rats demonstrates that CNBL-MNs-2 exhibited a larger area under the curve (AUC₀–t) (61.57 ± 4.23 ng·h/mL) than the IP injection (37.04 ± 5.83 ng·h/mL), indicating significant (<i>p</i> &gt; 0.05) increase in systemic availability and sustained release. The Cmax of CNBL-MNs-2 (6.10 ± 0.533 ng/mL) was comparable to that of the IP injection (6.20 ± 1.5 ng/mL), confirming efficient systemic absorption <i>via</i> the microneedle system. Additionally, Tmax was significantly (<i>p</i> &gt; 0.05) prolonged with CNBL-MNs-2 (8 h) compared to the IP injection (2 h), suggesting a slower, more controlled CNBL release.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyanocobalamin-loaded dissolving microneedles for enhanced transdermal delivery: development, characterization, and pharmacokinetic evaluation\",\"authors\":\"Mousam Bhowmik,&nbsp;Rajamma A. J.,&nbsp;Sateesha S. B.,&nbsp;Chandan R. S.,&nbsp;Girija E. K.,&nbsp;Punith M,&nbsp;Ebna Azizal Omar,&nbsp;Rajesh R\",\"doi\":\"10.1007/s10544-025-00747-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study demonstrates cyanocobalamin-loaded dissolving microneedles (CNBL-MNs) as a minimally invasive transdermal solution for managing cyanocobalamin (CNBL) deficiency, offering an alternative to intramuscular injections and oral supplements. The CNBL-MNs were developed using biodegradable, water-soluble polymers such as polyvinylpyrrolidone K25, Dextran K40, and chitosan to ensure controlled and gradual release of the CNBL. The formulation’s stability and integrity were assessed through FTIR and XRD analyses. SEM imaging revealed well-formed microneedles with a height of 800 μm, a 200 μm base diameter, and a 500 μm pitch. EDS confirmed the successful incorporation of CNBL in the microneedle array. The Parafilm<sup>®</sup> membrane insertion test revealed that the microneedles had strong mechanical properties and achieved 100% penetration efficiency. The microneedle array also demonstrated excellent (<i>P</i> &gt; 0.05) flexibility and structural stability. Ex-vivo release studies showed that 88.51% of the CNBL was released over 48 h, following a first-order kinetic model. The <i>n</i> value of 0.51 for Korsmeyer-Peppas model indicate an anomalous transport mechanism, suggesting a combination of diffusion and erosion. The in-vivo pharmacokinetic evaluation in Wistar rats demonstrates that CNBL-MNs-2 exhibited a larger area under the curve (AUC₀–t) (61.57 ± 4.23 ng·h/mL) than the IP injection (37.04 ± 5.83 ng·h/mL), indicating significant (<i>p</i> &gt; 0.05) increase in systemic availability and sustained release. The Cmax of CNBL-MNs-2 (6.10 ± 0.533 ng/mL) was comparable to that of the IP injection (6.20 ± 1.5 ng/mL), confirming efficient systemic absorption <i>via</i> the microneedle system. Additionally, Tmax was significantly (<i>p</i> &gt; 0.05) prolonged with CNBL-MNs-2 (8 h) compared to the IP injection (2 h), suggesting a slower, more controlled CNBL release.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-025-00747-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00747-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究证明了载氰钴胺溶解微针(CNBL- mns)作为治疗氰钴胺(CNBL)缺乏症的微创透皮解决方案,提供了肌内注射和口服补充的替代方案。CNBL- mns采用可生物降解的水溶性聚合物,如聚乙烯吡咯烷酮K25、葡聚糖K40和壳聚糖,以确保CNBL的可控和渐进释放。通过红外光谱(FTIR)和x射线衍射(XRD)对配方的稳定性和完整性进行了评价。扫描电镜成像显示,微针高度为800 μm,基底直径为200 μm,间距为500 μm。EDS证实了CNBL在微针阵列中的成功结合。Parafilm®膜插入测试表明,微针具有很强的机械性能,并达到100%的穿透效率。微针阵列也表现出优异的柔韧性和结构稳定性(P > 0.05)。体外释放研究表明,88.51%的CNBL在48 h内释放,符合一级动力学模型。Korsmeyer-Peppas模式的n值为0.51,表明输运机制异常,可能是扩散和侵蚀的结合。Wistar大鼠体内药代动力学评价表明,cnbln - mns -2的曲线下面积(AUC 0 -t)(61.57±4.23 ng·h/mL)比IP注射液(37.04±5.83 ng·h/mL)更大,表明其全身利用度和缓释度显著(p > 0.05)提高。CNBL-MNs-2的Cmax(6.10±0.533 ng/mL)与IP注射液的Cmax(6.20±1.5 ng/mL)相当,证实了微针系统对CNBL-MNs-2的有效吸收。此外,与IP注射(2小时)相比,CNBL- mns -2的Tmax(8小时)显著延长(p > 0.05),表明CNBL释放更缓慢,更可控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyanocobalamin-loaded dissolving microneedles for enhanced transdermal delivery: development, characterization, and pharmacokinetic evaluation

This study demonstrates cyanocobalamin-loaded dissolving microneedles (CNBL-MNs) as a minimally invasive transdermal solution for managing cyanocobalamin (CNBL) deficiency, offering an alternative to intramuscular injections and oral supplements. The CNBL-MNs were developed using biodegradable, water-soluble polymers such as polyvinylpyrrolidone K25, Dextran K40, and chitosan to ensure controlled and gradual release of the CNBL. The formulation’s stability and integrity were assessed through FTIR and XRD analyses. SEM imaging revealed well-formed microneedles with a height of 800 μm, a 200 μm base diameter, and a 500 μm pitch. EDS confirmed the successful incorporation of CNBL in the microneedle array. The Parafilm® membrane insertion test revealed that the microneedles had strong mechanical properties and achieved 100% penetration efficiency. The microneedle array also demonstrated excellent (P > 0.05) flexibility and structural stability. Ex-vivo release studies showed that 88.51% of the CNBL was released over 48 h, following a first-order kinetic model. The n value of 0.51 for Korsmeyer-Peppas model indicate an anomalous transport mechanism, suggesting a combination of diffusion and erosion. The in-vivo pharmacokinetic evaluation in Wistar rats demonstrates that CNBL-MNs-2 exhibited a larger area under the curve (AUC₀–t) (61.57 ± 4.23 ng·h/mL) than the IP injection (37.04 ± 5.83 ng·h/mL), indicating significant (p > 0.05) increase in systemic availability and sustained release. The Cmax of CNBL-MNs-2 (6.10 ± 0.533 ng/mL) was comparable to that of the IP injection (6.20 ± 1.5 ng/mL), confirming efficient systemic absorption via the microneedle system. Additionally, Tmax was significantly (p > 0.05) prolonged with CNBL-MNs-2 (8 h) compared to the IP injection (2 h), suggesting a slower, more controlled CNBL release.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信