Mihail S. Georgiev;Aaron D. Pitcher;Timothy N. Davidson
{"title":"基于后时共振参数分布匹配的雷达目标分类","authors":"Mihail S. Georgiev;Aaron D. Pitcher;Timothy N. Davidson","doi":"10.1109/TRS.2025.3559394","DOIUrl":null,"url":null,"abstract":"A promising nonimagining approach to the classification of radar targets is to use the frequencies and attenuation rates of the resonant modes that present during a target’s late-time response (LTR) as features. Unfortunately, the estimation of these resonance parameters is rather sensitive to noise. However, we observe that when a large number of measurements of the LTR can be taken in a short time, the probability distribution of the estimates of the parameters can be estimated and then matched against a database of such distributions. That has the potential to reduce the sensitivity of the classification problem to noise. In this article, we develop a pragmatic approach to target classification using this distribution-matching approach and demonstrate its effectiveness through physical experiments. The proposed approach is shown to be highly robust to environmental clutter and somewhat robust to target orientation.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"645-655"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Radar Targets via Distribution Matching of Late-Time Resonance Parameters\",\"authors\":\"Mihail S. Georgiev;Aaron D. Pitcher;Timothy N. Davidson\",\"doi\":\"10.1109/TRS.2025.3559394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising nonimagining approach to the classification of radar targets is to use the frequencies and attenuation rates of the resonant modes that present during a target’s late-time response (LTR) as features. Unfortunately, the estimation of these resonance parameters is rather sensitive to noise. However, we observe that when a large number of measurements of the LTR can be taken in a short time, the probability distribution of the estimates of the parameters can be estimated and then matched against a database of such distributions. That has the potential to reduce the sensitivity of the classification problem to noise. In this article, we develop a pragmatic approach to target classification using this distribution-matching approach and demonstrate its effectiveness through physical experiments. The proposed approach is shown to be highly robust to environmental clutter and somewhat robust to target orientation.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"645-655\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960268/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960268/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Radar Targets via Distribution Matching of Late-Time Resonance Parameters
A promising nonimagining approach to the classification of radar targets is to use the frequencies and attenuation rates of the resonant modes that present during a target’s late-time response (LTR) as features. Unfortunately, the estimation of these resonance parameters is rather sensitive to noise. However, we observe that when a large number of measurements of the LTR can be taken in a short time, the probability distribution of the estimates of the parameters can be estimated and then matched against a database of such distributions. That has the potential to reduce the sensitivity of the classification problem to noise. In this article, we develop a pragmatic approach to target classification using this distribution-matching approach and demonstrate its effectiveness through physical experiments. The proposed approach is shown to be highly robust to environmental clutter and somewhat robust to target orientation.