预测汽车保险购买模式的改进监督机器学习

Mourad Nachaoui;Fatma Manlaikhaf;Soufiane Lyaqini
{"title":"预测汽车保险购买模式的改进监督机器学习","authors":"Mourad Nachaoui;Fatma Manlaikhaf;Soufiane Lyaqini","doi":"10.1109/TAI.2024.3521870","DOIUrl":null,"url":null,"abstract":"This article presents a predictive model using supervised machine learning, highlighting the importance of advanced optimization algorithms. Our approach focuses on a nonsmooth loss function known for its effectiveness in supervised machine learning. To ensure desirable properties such as second derivatives and convexity, and to handle outliers, we use a smoothing function to approximate the loss function. This enables the development of robust and stable algorithms for accurate predictions. We introduce a new surrogate smoothing function that is twice differentiable and convex, enhancing the effectiveness of our methodology. Using optimization techniques, especially stochastic gradient descent with Nesterov momentum, we optimize the predictive model. We validate our algorithm through a comprehensive convergence analysis and extensive comparisons with two other prediction models. Our experiments on real datasets from insurance companies demonstrate the practical significance of our approach in predicting auto insurance customer interest.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 5","pages":"1248-1258"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Supervised Machine Learning for Predicting Auto Insurance Purchase Patterns\",\"authors\":\"Mourad Nachaoui;Fatma Manlaikhaf;Soufiane Lyaqini\",\"doi\":\"10.1109/TAI.2024.3521870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a predictive model using supervised machine learning, highlighting the importance of advanced optimization algorithms. Our approach focuses on a nonsmooth loss function known for its effectiveness in supervised machine learning. To ensure desirable properties such as second derivatives and convexity, and to handle outliers, we use a smoothing function to approximate the loss function. This enables the development of robust and stable algorithms for accurate predictions. We introduce a new surrogate smoothing function that is twice differentiable and convex, enhancing the effectiveness of our methodology. Using optimization techniques, especially stochastic gradient descent with Nesterov momentum, we optimize the predictive model. We validate our algorithm through a comprehensive convergence analysis and extensive comparisons with two other prediction models. Our experiments on real datasets from insurance companies demonstrate the practical significance of our approach in predicting auto insurance customer interest.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 5\",\"pages\":\"1248-1258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812953/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812953/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个使用监督机器学习的预测模型,强调了高级优化算法的重要性。我们的方法侧重于非光滑损失函数,以其在监督机器学习中的有效性而闻名。为了确保理想的性质,如二阶导数和凸性,并处理异常值,我们使用平滑函数来近似损失函数。这使得开发稳健和稳定的算法来进行准确的预测成为可能。我们引入了一个新的代理平滑函数,它是二次可微的和凸的,提高了我们的方法的有效性。利用优化技术,特别是随机梯度下降与Nesterov动量,我们优化了预测模型。我们通过全面的收敛分析和与其他两个预测模型的广泛比较来验证我们的算法。我们在保险公司的真实数据集上的实验证明了我们的方法在预测汽车保险客户兴趣方面的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Supervised Machine Learning for Predicting Auto Insurance Purchase Patterns
This article presents a predictive model using supervised machine learning, highlighting the importance of advanced optimization algorithms. Our approach focuses on a nonsmooth loss function known for its effectiveness in supervised machine learning. To ensure desirable properties such as second derivatives and convexity, and to handle outliers, we use a smoothing function to approximate the loss function. This enables the development of robust and stable algorithms for accurate predictions. We introduce a new surrogate smoothing function that is twice differentiable and convex, enhancing the effectiveness of our methodology. Using optimization techniques, especially stochastic gradient descent with Nesterov momentum, we optimize the predictive model. We validate our algorithm through a comprehensive convergence analysis and extensive comparisons with two other prediction models. Our experiments on real datasets from insurance companies demonstrate the practical significance of our approach in predicting auto insurance customer interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信