面向ai驱动的痴呆检测的标准化脑电传感器数量

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Quoc-Toan Nguyen
{"title":"面向ai驱动的痴呆检测的标准化脑电传感器数量","authors":"Quoc-Toan Nguyen","doi":"10.1109/LSENS.2025.3560259","DOIUrl":null,"url":null,"abstract":"For Alzheimer's disease (AD), the most prevalent dementia subtype, early detection is paramount for slowing disease progression because cures are not available. Artificial intelligence (AI) has gained significant attention for AD detection, particularly through electroencephalography (EEG)—a cost-effective, accessible technique that records brain activity from sensors placed on the scalp. However, the variability in EEG sensor configurations across different settings poses a significant challenge, as typical AI models require different models for specific setups. To address this limitation, this letter explores using EEG microstates to standardize sensor configurations and propose a new AI model, E-FastKAN, to validate sensor generalization, ensuring effectiveness regardless of the original number of sensors. Using data from 115 participants with 575 samples from high-density and low-density sensor setups, this study aims to open a new approach to reduce costs, increase accessibility, and broaden the usability of AI-driven dementia detection.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standardizing Number of EEG Sensors for AI-Driven Dementia Detection\",\"authors\":\"Quoc-Toan Nguyen\",\"doi\":\"10.1109/LSENS.2025.3560259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Alzheimer's disease (AD), the most prevalent dementia subtype, early detection is paramount for slowing disease progression because cures are not available. Artificial intelligence (AI) has gained significant attention for AD detection, particularly through electroencephalography (EEG)—a cost-effective, accessible technique that records brain activity from sensors placed on the scalp. However, the variability in EEG sensor configurations across different settings poses a significant challenge, as typical AI models require different models for specific setups. To address this limitation, this letter explores using EEG microstates to standardize sensor configurations and propose a new AI model, E-FastKAN, to validate sensor generalization, ensuring effectiveness regardless of the original number of sensors. Using data from 115 participants with 575 samples from high-density and low-density sensor setups, this study aims to open a new approach to reduce costs, increase accessibility, and broaden the usability of AI-driven dementia detection.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 5\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964170/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964170/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于阿尔茨海默病(AD),最普遍的痴呆症亚型,早期发现对于减缓疾病进展至关重要,因为无法治愈。人工智能(AI)在阿尔茨海默病检测方面获得了极大的关注,特别是通过脑电图(EEG)——一种成本效益高、易于使用的技术,可以通过放置在头皮上的传感器记录大脑活动。然而,不同设置下脑电图传感器配置的可变性带来了重大挑战,因为典型的人工智能模型需要针对特定设置的不同模型。为了解决这一限制,本文探讨了使用EEG微状态来标准化传感器配置,并提出了一种新的人工智能模型E-FastKAN,以验证传感器的泛化,无论传感器的原始数量如何,都能确保有效性。本研究利用来自高密度和低密度传感器设置的115名参与者的575个样本的数据,旨在开辟一种新的方法,以降低成本,增加可及性,并扩大人工智能驱动的痴呆症检测的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standardizing Number of EEG Sensors for AI-Driven Dementia Detection
For Alzheimer's disease (AD), the most prevalent dementia subtype, early detection is paramount for slowing disease progression because cures are not available. Artificial intelligence (AI) has gained significant attention for AD detection, particularly through electroencephalography (EEG)—a cost-effective, accessible technique that records brain activity from sensors placed on the scalp. However, the variability in EEG sensor configurations across different settings poses a significant challenge, as typical AI models require different models for specific setups. To address this limitation, this letter explores using EEG microstates to standardize sensor configurations and propose a new AI model, E-FastKAN, to validate sensor generalization, ensuring effectiveness regardless of the original number of sensors. Using data from 115 participants with 575 samples from high-density and low-density sensor setups, this study aims to open a new approach to reduce costs, increase accessibility, and broaden the usability of AI-driven dementia detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信