基于变换集成、标准化变距离学习自适应平滑和卷积神经网络的光纤异常分类

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Gianmarco Baldini
{"title":"基于变换集成、标准化变距离学习自适应平滑和卷积神经网络的光纤异常分类","authors":"Gianmarco Baldini","doi":"10.1109/LSENS.2025.3560144","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have been applied to the classification of different types of anomalies in optical networks. On the other side, the more challenging problem of the evaluation of the severity of a specific anomaly has been scarcely investigated. This letter proposes a hybrid machine learning/convolutional neural networks (CNN) approach, where the presence of noise is mitigated by a preprocessing step based on an adaptive smoothing algorithm and an ensemble of transforms to generate a feature space given in input to a CNN. The approach is applied to a recent public dataset with sensor data collected from a real fiber optical network for the fiber bending anomaly, where it is shown to outperform the direct application of CNN on the original sensor data in the time domain.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963893","citationCount":"0","resultStr":"{\"title\":\"Classification of Fiber Optics Anomalies Using Transforms Ensemble, Adaptive Smoothing Based on the Standardized Variable Distances Learning Algorithm and Convolutional Neural Networks\",\"authors\":\"Gianmarco Baldini\",\"doi\":\"10.1109/LSENS.2025.3560144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNN) have been applied to the classification of different types of anomalies in optical networks. On the other side, the more challenging problem of the evaluation of the severity of a specific anomaly has been scarcely investigated. This letter proposes a hybrid machine learning/convolutional neural networks (CNN) approach, where the presence of noise is mitigated by a preprocessing step based on an adaptive smoothing algorithm and an ensemble of transforms to generate a feature space given in input to a CNN. The approach is applied to a recent public dataset with sensor data collected from a real fiber optical network for the fiber bending anomaly, where it is shown to outperform the direct application of CNN on the original sensor data in the time domain.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 5\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963893/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963893/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)已被应用于光网络中不同类型异常的分类。另一方面,对特定异常严重程度的评估这一更具挑战性的问题几乎没有进行研究。这封信提出了一种混合机器学习/卷积神经网络(CNN)方法,其中通过基于自适应平滑算法和变换集合的预处理步骤来减轻噪声的存在,以生成输入给CNN的特征空间。将该方法应用于最近的公共数据集,该数据集收集了来自真实光纤网络的传感器数据,用于光纤弯曲异常,结果表明,该方法在时域上优于直接将CNN应用于原始传感器数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Fiber Optics Anomalies Using Transforms Ensemble, Adaptive Smoothing Based on the Standardized Variable Distances Learning Algorithm and Convolutional Neural Networks
Convolutional neural networks (CNN) have been applied to the classification of different types of anomalies in optical networks. On the other side, the more challenging problem of the evaluation of the severity of a specific anomaly has been scarcely investigated. This letter proposes a hybrid machine learning/convolutional neural networks (CNN) approach, where the presence of noise is mitigated by a preprocessing step based on an adaptive smoothing algorithm and an ensemble of transforms to generate a feature space given in input to a CNN. The approach is applied to a recent public dataset with sensor data collected from a real fiber optical network for the fiber bending anomaly, where it is shown to outperform the direct application of CNN on the original sensor data in the time domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信