Charlene Y.P. Guerrero, Madelyn R. Cusick, Amanda J. Samaras, Natalie S. Shamon, Daniel J. Cavanaugh
{"title":"果蝇休息-活动节律的外侧后时钟神经元调节,离不开细胞内的生物钟","authors":"Charlene Y.P. Guerrero, Madelyn R. Cusick, Amanda J. Samaras, Natalie S. Shamon, Daniel J. Cavanaugh","doi":"10.1016/j.nbscr.2025.100124","DOIUrl":null,"url":null,"abstract":"<div><div>Circadian control of behavior arises from intercommunication among a distributed network of circadian clock neurons in the brain. Single-cell sequencing and brain connectome data support the division of the ∼240 brain clock neurons in <em>Drosophila</em> into ∼20 subclusters, and functional studies demonstrate that these populations differentially contribute to behavioral outputs. Here, we have used genetic tools that enable highly selective, cell-specific manipulations to investigate the role of molecular clock function and neuronal activity within the lateral posterior clock neurons (LPNs) in the regulation of rest-activity rhythms. We find that genetic silencing of these neurons, which compromises signaling with downstream neuronal targets, substantially reduces the strength of free-running rest-activity rhythms. In contrast, locomotor activity patterns are robust to CRISPR-mediated disruption of molecular clock cycling within the LPNs. We conclude that the LPNs act as driven oscillators that retain the capacity to transmit circadian information in the absence of cell-intrinsic molecular clocks.</div></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"18 ","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cell-intrinsic circadian clock is dispensable for lateral posterior clock neuron regulation of Drosophila rest-activity rhythms\",\"authors\":\"Charlene Y.P. Guerrero, Madelyn R. Cusick, Amanda J. Samaras, Natalie S. Shamon, Daniel J. Cavanaugh\",\"doi\":\"10.1016/j.nbscr.2025.100124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Circadian control of behavior arises from intercommunication among a distributed network of circadian clock neurons in the brain. Single-cell sequencing and brain connectome data support the division of the ∼240 brain clock neurons in <em>Drosophila</em> into ∼20 subclusters, and functional studies demonstrate that these populations differentially contribute to behavioral outputs. Here, we have used genetic tools that enable highly selective, cell-specific manipulations to investigate the role of molecular clock function and neuronal activity within the lateral posterior clock neurons (LPNs) in the regulation of rest-activity rhythms. We find that genetic silencing of these neurons, which compromises signaling with downstream neuronal targets, substantially reduces the strength of free-running rest-activity rhythms. In contrast, locomotor activity patterns are robust to CRISPR-mediated disruption of molecular clock cycling within the LPNs. We conclude that the LPNs act as driven oscillators that retain the capacity to transmit circadian information in the absence of cell-intrinsic molecular clocks.</div></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"18 \",\"pages\":\"Article 100124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994425000136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994425000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
The cell-intrinsic circadian clock is dispensable for lateral posterior clock neuron regulation of Drosophila rest-activity rhythms
Circadian control of behavior arises from intercommunication among a distributed network of circadian clock neurons in the brain. Single-cell sequencing and brain connectome data support the division of the ∼240 brain clock neurons in Drosophila into ∼20 subclusters, and functional studies demonstrate that these populations differentially contribute to behavioral outputs. Here, we have used genetic tools that enable highly selective, cell-specific manipulations to investigate the role of molecular clock function and neuronal activity within the lateral posterior clock neurons (LPNs) in the regulation of rest-activity rhythms. We find that genetic silencing of these neurons, which compromises signaling with downstream neuronal targets, substantially reduces the strength of free-running rest-activity rhythms. In contrast, locomotor activity patterns are robust to CRISPR-mediated disruption of molecular clock cycling within the LPNs. We conclude that the LPNs act as driven oscillators that retain the capacity to transmit circadian information in the absence of cell-intrinsic molecular clocks.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.