近红外分数涡旋光束的直接探测

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Hui Zhao , Ruwei Zhao , Qilu Liu , Xiaokang Hu , Tianxiang Xu , Yan Sheng
{"title":"近红外分数涡旋光束的直接探测","authors":"Hui Zhao ,&nbsp;Ruwei Zhao ,&nbsp;Qilu Liu ,&nbsp;Xiaokang Hu ,&nbsp;Tianxiang Xu ,&nbsp;Yan Sheng","doi":"10.1016/j.infrared.2025.105893","DOIUrl":null,"url":null,"abstract":"<div><div>We report a scheme for direct detection of fractional orbital angular momentum (FOAM) of near-infrared optical beams. By using a designed nonlinear Dammann fractional vortex grating (NDFVG), near-infrared fractional optical vortex could be converted to a multi-channel visible pattern with similar intensities, and the range of FOAM could be read on the basis of the intensity profiles of diffracted beams. A fast method is summarized, which only requires observation at most three points. The detection accuracy of FOAM is 0.1, and it can be optimized by tuning the grating structure. The designed NDFVG is fabricated in a LiNbO<sub>3</sub> crystal, and the detection process is demonstrated with incident FOAM of 0.1 as an example. This method may meet the wide requirements of near-infrared optical vortex detection in optical operation, imaging, and integrated optical communication systems.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"148 ","pages":"Article 105893"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct detection of near-infrared fractional vortex beam\",\"authors\":\"Hui Zhao ,&nbsp;Ruwei Zhao ,&nbsp;Qilu Liu ,&nbsp;Xiaokang Hu ,&nbsp;Tianxiang Xu ,&nbsp;Yan Sheng\",\"doi\":\"10.1016/j.infrared.2025.105893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a scheme for direct detection of fractional orbital angular momentum (FOAM) of near-infrared optical beams. By using a designed nonlinear Dammann fractional vortex grating (NDFVG), near-infrared fractional optical vortex could be converted to a multi-channel visible pattern with similar intensities, and the range of FOAM could be read on the basis of the intensity profiles of diffracted beams. A fast method is summarized, which only requires observation at most three points. The detection accuracy of FOAM is 0.1, and it can be optimized by tuning the grating structure. The designed NDFVG is fabricated in a LiNbO<sub>3</sub> crystal, and the detection process is demonstrated with incident FOAM of 0.1 as an example. This method may meet the wide requirements of near-infrared optical vortex detection in optical operation, imaging, and integrated optical communication systems.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"148 \",\"pages\":\"Article 105893\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449525001860\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525001860","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种直接探测近红外光束分数轨道角动量(FOAM)的方案。利用设计的非线性Dammann分数涡光栅(NDFVG),可以将近红外分数光学涡流转换成具有相似强度的多通道可见光模式,并根据衍射光束的强度分布来读取FOAM的范围。总结了一种最多只需要观察三个点的快速方法。FOAM的检测精度为0.1,可通过调整光栅结构进行优化。在LiNbO3晶体中制备了所设计的NDFVG,并以0.1的入射FOAM为例演示了检测过程。该方法可满足光学操作、成像和综合光通信系统对近红外光涡旋检测的广泛需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct detection of near-infrared fractional vortex beam
We report a scheme for direct detection of fractional orbital angular momentum (FOAM) of near-infrared optical beams. By using a designed nonlinear Dammann fractional vortex grating (NDFVG), near-infrared fractional optical vortex could be converted to a multi-channel visible pattern with similar intensities, and the range of FOAM could be read on the basis of the intensity profiles of diffracted beams. A fast method is summarized, which only requires observation at most three points. The detection accuracy of FOAM is 0.1, and it can be optimized by tuning the grating structure. The designed NDFVG is fabricated in a LiNbO3 crystal, and the detection process is demonstrated with incident FOAM of 0.1 as an example. This method may meet the wide requirements of near-infrared optical vortex detection in optical operation, imaging, and integrated optical communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信