Xinyu Wang , Lin Ye , Wei Li , Tianyi Zheng , Xiyuan Liang , Cunliang Liu
{"title":"存在内孔随机粗糙度时的气膜冷却效果:综合分析","authors":"Xinyu Wang , Lin Ye , Wei Li , Tianyi Zheng , Xiyuan Liang , Cunliang Liu","doi":"10.1016/j.icheatmasstransfer.2025.108990","DOIUrl":null,"url":null,"abstract":"<div><div>Film cooling, with its excellent cooling performance, is widely applied in the active thermal protection design of aerospace propulsion systems. However, during manufacturing and service, film holes are affected by drilling processes and particle deposition, leading to significant deviations between the actual cooling structures and the original design. These deviations primarily manifest as hole blockage and increased surface roughness, which may cause cooling degradation. Therefore, it is essential to investigate the film cooling performance under structural damage and the jet-mainstream mixing mechanisms of damaged holes. This study focuses on internal roughness as a form of structural damage by investigating three levels of hole roughness—<em>Ra</em> = 3.1 μm (Film hole I), <em>Ra</em> = 35.9 μm (Film hole II), and <em>Ra</em> = 64.9 μm (Film hole III). The selected roughness levels and blowing ratios correspond to the practical range encountered in turbine cooling. The film cooling effectiveness distribution is measured using pressure-sensitive paint technology, and numerical simulations are conducted to analyze the flow field and support the experimental results. The results indicate that cooling degradation caused by internal roughness is mainly reflected in the reduction of high cooling effectiveness areas and the deterioration of cooling performance near the film hole exit. However, increased roughness also leads to an expansion of the film coverage in the spanwise, enhancing cooling performance downstream. Flow field analysis reveals that internal roughness increases the inhomogeneity of coolant velocity distribution inside the hole, strengthening the counter-rotating vortex pair and causing jet lift-off, which reduces the high cooling effectiveness area. Additionally, roughness-induced disturbances enhance turbulence intensity, promoting jet-mainstream mixing and increasing the overall film coverage.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"165 ","pages":"Article 108990"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Film cooling effectiveness in the presence of internal hole random roughness: A comprehensive analysis\",\"authors\":\"Xinyu Wang , Lin Ye , Wei Li , Tianyi Zheng , Xiyuan Liang , Cunliang Liu\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.108990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Film cooling, with its excellent cooling performance, is widely applied in the active thermal protection design of aerospace propulsion systems. However, during manufacturing and service, film holes are affected by drilling processes and particle deposition, leading to significant deviations between the actual cooling structures and the original design. These deviations primarily manifest as hole blockage and increased surface roughness, which may cause cooling degradation. Therefore, it is essential to investigate the film cooling performance under structural damage and the jet-mainstream mixing mechanisms of damaged holes. This study focuses on internal roughness as a form of structural damage by investigating three levels of hole roughness—<em>Ra</em> = 3.1 μm (Film hole I), <em>Ra</em> = 35.9 μm (Film hole II), and <em>Ra</em> = 64.9 μm (Film hole III). The selected roughness levels and blowing ratios correspond to the practical range encountered in turbine cooling. The film cooling effectiveness distribution is measured using pressure-sensitive paint technology, and numerical simulations are conducted to analyze the flow field and support the experimental results. The results indicate that cooling degradation caused by internal roughness is mainly reflected in the reduction of high cooling effectiveness areas and the deterioration of cooling performance near the film hole exit. However, increased roughness also leads to an expansion of the film coverage in the spanwise, enhancing cooling performance downstream. Flow field analysis reveals that internal roughness increases the inhomogeneity of coolant velocity distribution inside the hole, strengthening the counter-rotating vortex pair and causing jet lift-off, which reduces the high cooling effectiveness area. Additionally, roughness-induced disturbances enhance turbulence intensity, promoting jet-mainstream mixing and increasing the overall film coverage.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"165 \",\"pages\":\"Article 108990\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325004166\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325004166","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Film cooling effectiveness in the presence of internal hole random roughness: A comprehensive analysis
Film cooling, with its excellent cooling performance, is widely applied in the active thermal protection design of aerospace propulsion systems. However, during manufacturing and service, film holes are affected by drilling processes and particle deposition, leading to significant deviations between the actual cooling structures and the original design. These deviations primarily manifest as hole blockage and increased surface roughness, which may cause cooling degradation. Therefore, it is essential to investigate the film cooling performance under structural damage and the jet-mainstream mixing mechanisms of damaged holes. This study focuses on internal roughness as a form of structural damage by investigating three levels of hole roughness—Ra = 3.1 μm (Film hole I), Ra = 35.9 μm (Film hole II), and Ra = 64.9 μm (Film hole III). The selected roughness levels and blowing ratios correspond to the practical range encountered in turbine cooling. The film cooling effectiveness distribution is measured using pressure-sensitive paint technology, and numerical simulations are conducted to analyze the flow field and support the experimental results. The results indicate that cooling degradation caused by internal roughness is mainly reflected in the reduction of high cooling effectiveness areas and the deterioration of cooling performance near the film hole exit. However, increased roughness also leads to an expansion of the film coverage in the spanwise, enhancing cooling performance downstream. Flow field analysis reveals that internal roughness increases the inhomogeneity of coolant velocity distribution inside the hole, strengthening the counter-rotating vortex pair and causing jet lift-off, which reduces the high cooling effectiveness area. Additionally, roughness-induced disturbances enhance turbulence intensity, promoting jet-mainstream mixing and increasing the overall film coverage.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.