流固相互作用:动脉血流的研究进展

Zubeir Allum Saib , Farid Abed , Mergen H. Ghayesh , Marco Amabili
{"title":"流固相互作用:动脉血流的研究进展","authors":"Zubeir Allum Saib ,&nbsp;Farid Abed ,&nbsp;Mergen H. Ghayesh ,&nbsp;Marco Amabili","doi":"10.1016/j.bea.2025.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decade, Fluid-Structure Interaction studies related to blood vessels have been an active area of research, as they adequately capture the multiphysics of blood flow within the circulatory system. Despite the growing interest, only few state-of-the-art reviews have been published in the literature, each focusing individually on the coronary artery, carotid artery, aorta, heart valves and peripheral arteries. This systematic review assesses the current research and implications of Fluid-Structure Interaction implementation strategies in relation to human arteries. It is meant to comprehensively amalgamate research studies on an array of arteries coupled with cardiovascular complications such as atherosclerosis, plaque calcification, aneurysms, aortic dissections and valve dysfunction. It additionally covers computational finite element and finite volume solver demands, coupling schemes, inlet and outlet boundary conditions specifications, Newtonian and non-Newtonian blood rheological properties, laminar and turbulent flow types, as well as the modelling of the vessel wall’s hyperelastic and viscoelastic mechanical behavior. The research information is retrieved from the last ten years and summarized in a tabulated format, to help researchers in easily extracting useful information for future investigations and reviews.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100171"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of fluid-structure interaction: blood flow in arteries\",\"authors\":\"Zubeir Allum Saib ,&nbsp;Farid Abed ,&nbsp;Mergen H. Ghayesh ,&nbsp;Marco Amabili\",\"doi\":\"10.1016/j.bea.2025.100171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the past decade, Fluid-Structure Interaction studies related to blood vessels have been an active area of research, as they adequately capture the multiphysics of blood flow within the circulatory system. Despite the growing interest, only few state-of-the-art reviews have been published in the literature, each focusing individually on the coronary artery, carotid artery, aorta, heart valves and peripheral arteries. This systematic review assesses the current research and implications of Fluid-Structure Interaction implementation strategies in relation to human arteries. It is meant to comprehensively amalgamate research studies on an array of arteries coupled with cardiovascular complications such as atherosclerosis, plaque calcification, aneurysms, aortic dissections and valve dysfunction. It additionally covers computational finite element and finite volume solver demands, coupling schemes, inlet and outlet boundary conditions specifications, Newtonian and non-Newtonian blood rheological properties, laminar and turbulent flow types, as well as the modelling of the vessel wall’s hyperelastic and viscoelastic mechanical behavior. The research information is retrieved from the last ten years and summarized in a tabulated format, to help researchers in easily extracting useful information for future investigations and reviews.</div></div>\",\"PeriodicalId\":72384,\"journal\":{\"name\":\"Biomedical engineering advances\",\"volume\":\"9 \",\"pages\":\"Article 100171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical engineering advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667099225000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667099225000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,与血管相关的流体-结构相互作用研究一直是一个活跃的研究领域,因为它们充分捕捉了循环系统内血液流动的多物理场。尽管人们的兴趣越来越浓厚,但文献中发表的最新综述很少,每一篇综述都单独关注冠状动脉、颈动脉、主动脉、心脏瓣膜和外周动脉。这篇系统的综述评估了与人体动脉相关的流体-结构相互作用实施策略的当前研究和意义。它的目的是全面合并对一系列动脉合并心血管并发症的研究,如动脉粥样硬化、斑块钙化、动脉瘤、主动脉夹层和瓣膜功能障碍。此外,它还涵盖了计算有限元和有限体积求解器的要求,耦合方案,进出口边界条件规范,牛顿和非牛顿血液流变学特性,层流和湍流类型,以及血管壁的超弹性和粘弹性力学行为的建模。检索了近十年的研究信息,并以表格形式进行了总结,以帮助研究人员方便地提取有用的信息,以便于未来的调查和评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of fluid-structure interaction: blood flow in arteries
Over the past decade, Fluid-Structure Interaction studies related to blood vessels have been an active area of research, as they adequately capture the multiphysics of blood flow within the circulatory system. Despite the growing interest, only few state-of-the-art reviews have been published in the literature, each focusing individually on the coronary artery, carotid artery, aorta, heart valves and peripheral arteries. This systematic review assesses the current research and implications of Fluid-Structure Interaction implementation strategies in relation to human arteries. It is meant to comprehensively amalgamate research studies on an array of arteries coupled with cardiovascular complications such as atherosclerosis, plaque calcification, aneurysms, aortic dissections and valve dysfunction. It additionally covers computational finite element and finite volume solver demands, coupling schemes, inlet and outlet boundary conditions specifications, Newtonian and non-Newtonian blood rheological properties, laminar and turbulent flow types, as well as the modelling of the vessel wall’s hyperelastic and viscoelastic mechanical behavior. The research information is retrieved from the last ten years and summarized in a tabulated format, to help researchers in easily extracting useful information for future investigations and reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical engineering advances
Biomedical engineering advances Bioengineering, Biomedical Engineering
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信