基于机器学习的层叠式cpcms建筑动态冷负荷预测方法研究

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Xiangfei Kong, Caimeng Zhao, Huageng Dai, Yimeng Sun, Jianjuan Yuan
{"title":"基于机器学习的层叠式cpcms建筑动态冷负荷预测方法研究","authors":"Xiangfei Kong,&nbsp;Caimeng Zhao,&nbsp;Huageng Dai,&nbsp;Yimeng Sun,&nbsp;Jianjuan Yuan","doi":"10.1016/j.applthermaleng.2025.126644","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change buildings utilize reversible phase change for thermal energy storage, offering significant energy-saving potential. However, accurate load prediction in such buildings remains challenging due to complex heat transfer dynamics. This study constructs three test rooms—Room 1# (conventional), Room 2# (single-CPCMs), and Room 3# (cascaded-CPCMs with cascaded phase change temperatures: 19.18 °C, 23.05 °C, 26.29 °C)—to investigate thermal performance and develop a novel dynamic cooling load prediction framework. The cascaded-CPCMs design integrates vertically layered composite phase change materials to sequentially absorb/release heat, while a hybrid SSA-VMD-PCA methodology optimizes data quality for load forecasting. Specifically, the Sparrow Search Algorithm (SSA) optimizes Variational Mode Decomposition (VMD) parameters, decomposing original load data into Intrinsic Mode Functions (IMFs). Principal Component Analysis (PCA) then reduces dimensionality by extracting key features from IMFs. The processed data is fed into machine learning models (MLR, SVM, Bo-XG Boost) combined with a sliding window technique for dynamic predictions. Results show cascaded-CPCMs reduce summer temperature swings by 15 % and cooling loads by 16.52 % compared to conventional buildings. The SSA-VMD-PCA framework enhances prediction accuracy by 59.88 %, with the MLR model achieving the highest precision (R<sup>2</sup> ≥ 0.9998, MAE ≤ 0.1067). This study provides a validated methodology for scalable energy-efficient building design and adaptive thermal management.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"274 ","pages":"Article 126644"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on dynamic cooling load prediction method of cascaded-CPCMs building based on machine learning\",\"authors\":\"Xiangfei Kong,&nbsp;Caimeng Zhao,&nbsp;Huageng Dai,&nbsp;Yimeng Sun,&nbsp;Jianjuan Yuan\",\"doi\":\"10.1016/j.applthermaleng.2025.126644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phase change buildings utilize reversible phase change for thermal energy storage, offering significant energy-saving potential. However, accurate load prediction in such buildings remains challenging due to complex heat transfer dynamics. This study constructs three test rooms—Room 1# (conventional), Room 2# (single-CPCMs), and Room 3# (cascaded-CPCMs with cascaded phase change temperatures: 19.18 °C, 23.05 °C, 26.29 °C)—to investigate thermal performance and develop a novel dynamic cooling load prediction framework. The cascaded-CPCMs design integrates vertically layered composite phase change materials to sequentially absorb/release heat, while a hybrid SSA-VMD-PCA methodology optimizes data quality for load forecasting. Specifically, the Sparrow Search Algorithm (SSA) optimizes Variational Mode Decomposition (VMD) parameters, decomposing original load data into Intrinsic Mode Functions (IMFs). Principal Component Analysis (PCA) then reduces dimensionality by extracting key features from IMFs. The processed data is fed into machine learning models (MLR, SVM, Bo-XG Boost) combined with a sliding window technique for dynamic predictions. Results show cascaded-CPCMs reduce summer temperature swings by 15 % and cooling loads by 16.52 % compared to conventional buildings. The SSA-VMD-PCA framework enhances prediction accuracy by 59.88 %, with the MLR model achieving the highest precision (R<sup>2</sup> ≥ 0.9998, MAE ≤ 0.1067). This study provides a validated methodology for scalable energy-efficient building design and adaptive thermal management.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"274 \",\"pages\":\"Article 126644\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125012360\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125012360","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

相变建筑利用可逆相变进行热能储存,具有显著的节能潜力。然而,由于复杂的传热动力学,准确的负荷预测仍然具有挑战性。本研究构建了3个试验室——1#室(常规)、2#室(单cpcm)和3#室(串联相变温度为19.18°C、23.05°C和26.29°C的串联cpcm),以研究热性能并开发一种新的动态冷负荷预测框架。层叠式cpcms设计集成了垂直分层复合相变材料,以顺序吸收/释放热量,而混合SSA-VMD-PCA方法优化了负载预测的数据质量。具体而言,麻雀搜索算法(SSA)优化变分模态分解(VMD)参数,将原始负载数据分解为内禀模态函数(IMFs)。然后,主成分分析(PCA)通过从imf中提取关键特征来降低维度。处理后的数据被输入机器学习模型(MLR、SVM、Bo-XG Boost),并结合滑动窗口技术进行动态预测。结果表明,与传统建筑相比,层叠式cpcm可减少15%的夏季温度波动和16.52%的冷负荷。SSA-VMD-PCA框架的预测精度提高59.88%,其中MLR模型的预测精度最高(R2≥0.9998,MAE≤0.1067)。本研究为可扩展的节能建筑设计和适应性热管理提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on dynamic cooling load prediction method of cascaded-CPCMs building based on machine learning
Phase change buildings utilize reversible phase change for thermal energy storage, offering significant energy-saving potential. However, accurate load prediction in such buildings remains challenging due to complex heat transfer dynamics. This study constructs three test rooms—Room 1# (conventional), Room 2# (single-CPCMs), and Room 3# (cascaded-CPCMs with cascaded phase change temperatures: 19.18 °C, 23.05 °C, 26.29 °C)—to investigate thermal performance and develop a novel dynamic cooling load prediction framework. The cascaded-CPCMs design integrates vertically layered composite phase change materials to sequentially absorb/release heat, while a hybrid SSA-VMD-PCA methodology optimizes data quality for load forecasting. Specifically, the Sparrow Search Algorithm (SSA) optimizes Variational Mode Decomposition (VMD) parameters, decomposing original load data into Intrinsic Mode Functions (IMFs). Principal Component Analysis (PCA) then reduces dimensionality by extracting key features from IMFs. The processed data is fed into machine learning models (MLR, SVM, Bo-XG Boost) combined with a sliding window technique for dynamic predictions. Results show cascaded-CPCMs reduce summer temperature swings by 15 % and cooling loads by 16.52 % compared to conventional buildings. The SSA-VMD-PCA framework enhances prediction accuracy by 59.88 %, with the MLR model achieving the highest precision (R2 ≥ 0.9998, MAE ≤ 0.1067). This study provides a validated methodology for scalable energy-efficient building design and adaptive thermal management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信