提出了一种实现16个布尔逻辑运算的自旋轨道转矩MRAM阵列多比特单元方案

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Liu , Pingfan Ning , Delin Zhang , Pingjuan Niu , Yong Jiang
{"title":"提出了一种实现16个布尔逻辑运算的自旋轨道转矩MRAM阵列多比特单元方案","authors":"Jie Liu ,&nbsp;Pingfan Ning ,&nbsp;Delin Zhang ,&nbsp;Pingjuan Niu ,&nbsp;Yong Jiang","doi":"10.1016/j.mejo.2025.106711","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic random access memory (MRAM) is a promising applicant for universal memory in the post-Moore age, due to its beneficial characteristics in terms of energy efficiency, integration, and endurance. Spin-orbit torque (SOT) MRAM for logic-in-memory (LIM) is a highly anticipated method for processing-in-memory (PIM) to address the von Neumann bottleneck. We present a flexible SOT-MRAM array cell scheme capable of storing multiple bits and executing 16 complete Boolean logic operations. Two magnetic tunnel junctions (MTJs) utilizing SOT and voltage-controlled magnetic anisotropy (VCMA) effects, combined with three transistors, form a 3T2M cell capable of four resistance states (2-bit) for data storage, necessitating a minimum average power consumption of 2.483 fJ/bit for writing. The two operational steps of all-electrical modulation, comprising the write and logic operations, are adequate to execute the 16 Boolean logics in situ. These findings may provide a basis for the development of adaptable and programmable LIM techniques for reconfigurable digital PIM architectures.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106711"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal of a multi-bit cell scheme for spin-orbit torque MRAM array to implement 16 Boolean logic operations\",\"authors\":\"Jie Liu ,&nbsp;Pingfan Ning ,&nbsp;Delin Zhang ,&nbsp;Pingjuan Niu ,&nbsp;Yong Jiang\",\"doi\":\"10.1016/j.mejo.2025.106711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic random access memory (MRAM) is a promising applicant for universal memory in the post-Moore age, due to its beneficial characteristics in terms of energy efficiency, integration, and endurance. Spin-orbit torque (SOT) MRAM for logic-in-memory (LIM) is a highly anticipated method for processing-in-memory (PIM) to address the von Neumann bottleneck. We present a flexible SOT-MRAM array cell scheme capable of storing multiple bits and executing 16 complete Boolean logic operations. Two magnetic tunnel junctions (MTJs) utilizing SOT and voltage-controlled magnetic anisotropy (VCMA) effects, combined with three transistors, form a 3T2M cell capable of four resistance states (2-bit) for data storage, necessitating a minimum average power consumption of 2.483 fJ/bit for writing. The two operational steps of all-electrical modulation, comprising the write and logic operations, are adequate to execute the 16 Boolean logics in situ. These findings may provide a basis for the development of adaptable and programmable LIM techniques for reconfigurable digital PIM architectures.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"161 \",\"pages\":\"Article 106711\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001602\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

磁随机存取存储器(MRAM)由于其在能效、集成度和耐用性等方面的优点,在后摩尔时代被广泛应用于通用存储器。自旋轨道扭矩(SOT) MRAM是一种备受期待的内存处理(PIM)方法,以解决冯·诺依曼瓶颈。我们提出了一种灵活的SOT-MRAM阵列单元方案,能够存储多个比特并执行16个完整的布尔逻辑运算。利用SOT和电压控制磁各向异性(VCMA)效应的两个磁隧道结(MTJs)与三个晶体管相结合,形成一个3T2M单元,具有4个电阻状态(2位)用于数据存储,写入所需的最小平均功耗为2.483 fJ/bit。全电调制的两个操作步骤,包括写入和逻辑操作,足以在原位执行16个布尔逻辑。这些发现可以为可重构数字PIM体系结构的适应性和可编程LIM技术的发展提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal of a multi-bit cell scheme for spin-orbit torque MRAM array to implement 16 Boolean logic operations
Magnetic random access memory (MRAM) is a promising applicant for universal memory in the post-Moore age, due to its beneficial characteristics in terms of energy efficiency, integration, and endurance. Spin-orbit torque (SOT) MRAM for logic-in-memory (LIM) is a highly anticipated method for processing-in-memory (PIM) to address the von Neumann bottleneck. We present a flexible SOT-MRAM array cell scheme capable of storing multiple bits and executing 16 complete Boolean logic operations. Two magnetic tunnel junctions (MTJs) utilizing SOT and voltage-controlled magnetic anisotropy (VCMA) effects, combined with three transistors, form a 3T2M cell capable of four resistance states (2-bit) for data storage, necessitating a minimum average power consumption of 2.483 fJ/bit for writing. The two operational steps of all-electrical modulation, comprising the write and logic operations, are adequate to execute the 16 Boolean logics in situ. These findings may provide a basis for the development of adaptable and programmable LIM techniques for reconfigurable digital PIM architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信