可耕种土地上的土壤侵蚀事件通过机器学习来预报

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Pedro V.G. Batista , Markus Möller , Karsten Schmidt , Timm Waldau , Kay Seufferheld , Abdelaziz Htitiou , Burkhard Golla , Florian Ebertseder , Karl Auerswald , Peter Fiener
{"title":"可耕种土地上的土壤侵蚀事件通过机器学习来预报","authors":"Pedro V.G. Batista ,&nbsp;Markus Möller ,&nbsp;Karsten Schmidt ,&nbsp;Timm Waldau ,&nbsp;Kay Seufferheld ,&nbsp;Abdelaziz Htitiou ,&nbsp;Burkhard Golla ,&nbsp;Florian Ebertseder ,&nbsp;Karl Auerswald ,&nbsp;Peter Fiener","doi":"10.1016/j.catena.2025.109080","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimates of the location, timing, and severity of soil-erosion events on arable land have eluded erosion-prediction technology for decades. Here, for the first time, we demonstrate how a machine learning model parameterised with spatiotemporal covariates within a back-end infrastructure of data cubes can nowcast the occurrence and relatively rank the severity of erosion events on arable field parcels at the regional scale with high accuracy and interpretable outputs. Our findings pave the way for dynamic erosion-monitoring systems to achieve healthy soils and improve food security.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"256 ","pages":"Article 109080"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil-erosion events on arable land are nowcast by machine learning\",\"authors\":\"Pedro V.G. Batista ,&nbsp;Markus Möller ,&nbsp;Karsten Schmidt ,&nbsp;Timm Waldau ,&nbsp;Kay Seufferheld ,&nbsp;Abdelaziz Htitiou ,&nbsp;Burkhard Golla ,&nbsp;Florian Ebertseder ,&nbsp;Karl Auerswald ,&nbsp;Peter Fiener\",\"doi\":\"10.1016/j.catena.2025.109080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate estimates of the location, timing, and severity of soil-erosion events on arable land have eluded erosion-prediction technology for decades. Here, for the first time, we demonstrate how a machine learning model parameterised with spatiotemporal covariates within a back-end infrastructure of data cubes can nowcast the occurrence and relatively rank the severity of erosion events on arable field parcels at the regional scale with high accuracy and interpretable outputs. Our findings pave the way for dynamic erosion-monitoring systems to achieve healthy soils and improve food security.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":\"256 \",\"pages\":\"Article 109080\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816225003820\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816225003820","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,侵蚀预测技术一直无法准确估计耕地土壤侵蚀事件的位置、时间和严重程度。在这里,我们首次展示了在数据立方体的后端基础设施中使用时空协变量参数化的机器学习模型如何能够在区域尺度上以高精度和可解释的输出对耕地地块上侵蚀事件的发生和相对严重程度进行临近预测。我们的发现为动态侵蚀监测系统铺平了道路,以实现健康的土壤和改善粮食安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soil-erosion events on arable land are nowcast by machine learning
Accurate estimates of the location, timing, and severity of soil-erosion events on arable land have eluded erosion-prediction technology for decades. Here, for the first time, we demonstrate how a machine learning model parameterised with spatiotemporal covariates within a back-end infrastructure of data cubes can nowcast the occurrence and relatively rank the severity of erosion events on arable field parcels at the regional scale with high accuracy and interpretable outputs. Our findings pave the way for dynamic erosion-monitoring systems to achieve healthy soils and improve food security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信