{"title":"长方体纳米结构对固液界面局部热阻分布影响的分子动力学研究","authors":"Takuto Omori, Masahiko Shibahara","doi":"10.1016/j.ijthermalsci.2025.109949","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on thermal transport at the interface between solid and liquid with various cuboid nanostructure systems. We calculated the solid–liquid interfacial thermal resistance (ITR) and the distribution of local ITRs with a 0.2 nm spatial resolution. The results were obtained using non–equilibrium molecular dynamics. Applying a thermal circuit model, we computed the thermal resistance by combining the local ITRs. Also, we introduced spectral analysis to explain the distribution of local ITR magnitudes. As a result, we found that the local ITRs decreased at the top corner of the nanostructure and increased at its base. The thermal transport at the top corner contributed significantly to the total thermal transport at the solid–liquid interface. It was revealed that the ratio of the overall ITR to the combined local ITRs agreed with the ratio of the area of a flat surface to the area along the lower wall and the nanostructure, including the Cassie–Baxter state, only when the local temperature jumps around the interface are closely similar i.e. the interaction strength between solid and liquid is not extremely high. Moreover, from spectral analysis of solid atoms, we found that the vibrational density of states (VDOS) and the spectral heat flux of the solid atoms at the top corner of the nanostructure peaked in a low–frequency range and the VDOS overlap became higher at the top corner in all cases. This strong vibrational coupling is another factor contributing to the lowest local ITR at the top corner of the nanostructure.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 109949"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics study on the effects of cuboid nanostructure on the distribution of local thermal resistance at a solid–liquid interface\",\"authors\":\"Takuto Omori, Masahiko Shibahara\",\"doi\":\"10.1016/j.ijthermalsci.2025.109949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on thermal transport at the interface between solid and liquid with various cuboid nanostructure systems. We calculated the solid–liquid interfacial thermal resistance (ITR) and the distribution of local ITRs with a 0.2 nm spatial resolution. The results were obtained using non–equilibrium molecular dynamics. Applying a thermal circuit model, we computed the thermal resistance by combining the local ITRs. Also, we introduced spectral analysis to explain the distribution of local ITR magnitudes. As a result, we found that the local ITRs decreased at the top corner of the nanostructure and increased at its base. The thermal transport at the top corner contributed significantly to the total thermal transport at the solid–liquid interface. It was revealed that the ratio of the overall ITR to the combined local ITRs agreed with the ratio of the area of a flat surface to the area along the lower wall and the nanostructure, including the Cassie–Baxter state, only when the local temperature jumps around the interface are closely similar i.e. the interaction strength between solid and liquid is not extremely high. Moreover, from spectral analysis of solid atoms, we found that the vibrational density of states (VDOS) and the spectral heat flux of the solid atoms at the top corner of the nanostructure peaked in a low–frequency range and the VDOS overlap became higher at the top corner in all cases. This strong vibrational coupling is another factor contributing to the lowest local ITR at the top corner of the nanostructure.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"215 \",\"pages\":\"Article 109949\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925002728\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002728","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Molecular dynamics study on the effects of cuboid nanostructure on the distribution of local thermal resistance at a solid–liquid interface
This study focuses on thermal transport at the interface between solid and liquid with various cuboid nanostructure systems. We calculated the solid–liquid interfacial thermal resistance (ITR) and the distribution of local ITRs with a 0.2 nm spatial resolution. The results were obtained using non–equilibrium molecular dynamics. Applying a thermal circuit model, we computed the thermal resistance by combining the local ITRs. Also, we introduced spectral analysis to explain the distribution of local ITR magnitudes. As a result, we found that the local ITRs decreased at the top corner of the nanostructure and increased at its base. The thermal transport at the top corner contributed significantly to the total thermal transport at the solid–liquid interface. It was revealed that the ratio of the overall ITR to the combined local ITRs agreed with the ratio of the area of a flat surface to the area along the lower wall and the nanostructure, including the Cassie–Baxter state, only when the local temperature jumps around the interface are closely similar i.e. the interaction strength between solid and liquid is not extremely high. Moreover, from spectral analysis of solid atoms, we found that the vibrational density of states (VDOS) and the spectral heat flux of the solid atoms at the top corner of the nanostructure peaked in a low–frequency range and the VDOS overlap became higher at the top corner in all cases. This strong vibrational coupling is another factor contributing to the lowest local ITR at the top corner of the nanostructure.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.