Shuai Yang , Zengyou Liang , Xiangzhao Xu , Jianguo Ning
{"title":"爆炸荷载作用下混凝土破片分布的数值模拟方法","authors":"Shuai Yang , Zengyou Liang , Xiangzhao Xu , Jianguo Ning","doi":"10.1016/j.engfailanal.2025.109606","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete is widely employed in the construction of buildings and critical infrastructure, however, such structures are highly vulnerable to blast loads during their service. The concrete structures undergo fracture and fragmentation failure when subjected to blast loading, the resulting secondary concrete fragments possess substantial kinetic energy and destructive potential, capable of inflicting significant collateral damage to personnel and equipment within the affected area. This study focuses on high-energy secondary fragments generated under blast loading, a numerical investigation is conducted using the LS-DYNA simulation software, the high explosive model, air medium model, and concrete Karagozian&Case (KC) material model are integrated with the Arbitrary Lagrangian–Eulerian (ALE) method to simulate concrete fragmentation behavior under multiple blast scenarios. The fragmentation morphology is characterized for both lateral and top detonation, furthermore, a specialized analysis plugin is developed through secondary programming to complete the identification and data output for concrete fragments across various particle sizes. The effective extraction and quantitative statistics methods for fragmentation parameters information are proposed, moreover, the accuracy of the present numerical simulation method is verified with the comparative of the experimental and theoretical results. Parametric analysis are performed to investigate the influence of concrete strength grade and charge mass on fragmentation behavior, the quantitative distribution and percentage composition of secondary fragments are determined in different particle size ranges. The identification statistical program and fragmentation information extraction method developed in this study can solve the problems for quantitative prediction on concrete fragmentation behavior, which are meaningful for the damage assessment and mining engineering.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"176 ","pages":"Article 109606"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical simulation method for fragments distribution of concrete subjected to blast loading\",\"authors\":\"Shuai Yang , Zengyou Liang , Xiangzhao Xu , Jianguo Ning\",\"doi\":\"10.1016/j.engfailanal.2025.109606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Concrete is widely employed in the construction of buildings and critical infrastructure, however, such structures are highly vulnerable to blast loads during their service. The concrete structures undergo fracture and fragmentation failure when subjected to blast loading, the resulting secondary concrete fragments possess substantial kinetic energy and destructive potential, capable of inflicting significant collateral damage to personnel and equipment within the affected area. This study focuses on high-energy secondary fragments generated under blast loading, a numerical investigation is conducted using the LS-DYNA simulation software, the high explosive model, air medium model, and concrete Karagozian&Case (KC) material model are integrated with the Arbitrary Lagrangian–Eulerian (ALE) method to simulate concrete fragmentation behavior under multiple blast scenarios. The fragmentation morphology is characterized for both lateral and top detonation, furthermore, a specialized analysis plugin is developed through secondary programming to complete the identification and data output for concrete fragments across various particle sizes. The effective extraction and quantitative statistics methods for fragmentation parameters information are proposed, moreover, the accuracy of the present numerical simulation method is verified with the comparative of the experimental and theoretical results. Parametric analysis are performed to investigate the influence of concrete strength grade and charge mass on fragmentation behavior, the quantitative distribution and percentage composition of secondary fragments are determined in different particle size ranges. The identification statistical program and fragmentation information extraction method developed in this study can solve the problems for quantitative prediction on concrete fragmentation behavior, which are meaningful for the damage assessment and mining engineering.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"176 \",\"pages\":\"Article 109606\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725003474\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725003474","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A numerical simulation method for fragments distribution of concrete subjected to blast loading
Concrete is widely employed in the construction of buildings and critical infrastructure, however, such structures are highly vulnerable to blast loads during their service. The concrete structures undergo fracture and fragmentation failure when subjected to blast loading, the resulting secondary concrete fragments possess substantial kinetic energy and destructive potential, capable of inflicting significant collateral damage to personnel and equipment within the affected area. This study focuses on high-energy secondary fragments generated under blast loading, a numerical investigation is conducted using the LS-DYNA simulation software, the high explosive model, air medium model, and concrete Karagozian&Case (KC) material model are integrated with the Arbitrary Lagrangian–Eulerian (ALE) method to simulate concrete fragmentation behavior under multiple blast scenarios. The fragmentation morphology is characterized for both lateral and top detonation, furthermore, a specialized analysis plugin is developed through secondary programming to complete the identification and data output for concrete fragments across various particle sizes. The effective extraction and quantitative statistics methods for fragmentation parameters information are proposed, moreover, the accuracy of the present numerical simulation method is verified with the comparative of the experimental and theoretical results. Parametric analysis are performed to investigate the influence of concrete strength grade and charge mass on fragmentation behavior, the quantitative distribution and percentage composition of secondary fragments are determined in different particle size ranges. The identification statistical program and fragmentation information extraction method developed in this study can solve the problems for quantitative prediction on concrete fragmentation behavior, which are meaningful for the damage assessment and mining engineering.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.