John Östh , Umut Türk , Karima Kourtit , Peter Nijkamp
{"title":"享乐价格模型、社交媒体数据和人工智能——美国城市AIRBNB部门的应用","authors":"John Östh , Umut Türk , Karima Kourtit , Peter Nijkamp","doi":"10.1016/j.compenvurbsys.2025.102303","DOIUrl":null,"url":null,"abstract":"<div><div>The Airbnb sector has experienced exponential growth over the past decade and has led to extensive research in fields such as hospitality sciences, urban geography, tourism economics, and information management. This paper contributes to quantitative research in the Airbnb sector by focusing on the integration of digital platform data at the neighborhood level. It explores innovative methodologies for analyzing urban attractiveness by combining insights from hedonic pricing models with large-scale digital data sourced through AI-based approaches. This novel framework compares user-based valuations of accommodations derived from hedonic pricing with subjective, AI-generated neighborhood descriptions, offering new perspectives on data quality and reliability in information systems. The study also critically examines the challenges of integrating AI-generated content in information science, referencing also ‘Garbage-in Garbage-out’ and ‘Bullshit-in Bullshit-out’ concepts. Employing a multi-scalar modeling approach, the research examines Airbnb pricing dynamics across several U.S. cities, starting with Manhattan (USA) as an illustrative case. A subsequent large-scale application to additional metropolitan areas utilizes a combination of hedonic price modeling, social media data, and AI-generated urban descriptions, including a Shapley decomposition analysis. This interdisciplinary integration provides actionable insights into neighborhood attractiveness and pricing mechanisms, while highlighting methodological and empirical contributions to the broader field of information management. By employing the relationship between AI-driven textual data and quantitative modeling, this research provides added value in analyzing urban information systems and their application to digital platforms.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"120 ","pages":"Article 102303"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hedonic price models, social media data and AI – An application to the AIRBNB sector in us cities\",\"authors\":\"John Östh , Umut Türk , Karima Kourtit , Peter Nijkamp\",\"doi\":\"10.1016/j.compenvurbsys.2025.102303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Airbnb sector has experienced exponential growth over the past decade and has led to extensive research in fields such as hospitality sciences, urban geography, tourism economics, and information management. This paper contributes to quantitative research in the Airbnb sector by focusing on the integration of digital platform data at the neighborhood level. It explores innovative methodologies for analyzing urban attractiveness by combining insights from hedonic pricing models with large-scale digital data sourced through AI-based approaches. This novel framework compares user-based valuations of accommodations derived from hedonic pricing with subjective, AI-generated neighborhood descriptions, offering new perspectives on data quality and reliability in information systems. The study also critically examines the challenges of integrating AI-generated content in information science, referencing also ‘Garbage-in Garbage-out’ and ‘Bullshit-in Bullshit-out’ concepts. Employing a multi-scalar modeling approach, the research examines Airbnb pricing dynamics across several U.S. cities, starting with Manhattan (USA) as an illustrative case. A subsequent large-scale application to additional metropolitan areas utilizes a combination of hedonic price modeling, social media data, and AI-generated urban descriptions, including a Shapley decomposition analysis. This interdisciplinary integration provides actionable insights into neighborhood attractiveness and pricing mechanisms, while highlighting methodological and empirical contributions to the broader field of information management. By employing the relationship between AI-driven textual data and quantitative modeling, this research provides added value in analyzing urban information systems and their application to digital platforms.</div></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"120 \",\"pages\":\"Article 102303\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971525000560\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000560","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Hedonic price models, social media data and AI – An application to the AIRBNB sector in us cities
The Airbnb sector has experienced exponential growth over the past decade and has led to extensive research in fields such as hospitality sciences, urban geography, tourism economics, and information management. This paper contributes to quantitative research in the Airbnb sector by focusing on the integration of digital platform data at the neighborhood level. It explores innovative methodologies for analyzing urban attractiveness by combining insights from hedonic pricing models with large-scale digital data sourced through AI-based approaches. This novel framework compares user-based valuations of accommodations derived from hedonic pricing with subjective, AI-generated neighborhood descriptions, offering new perspectives on data quality and reliability in information systems. The study also critically examines the challenges of integrating AI-generated content in information science, referencing also ‘Garbage-in Garbage-out’ and ‘Bullshit-in Bullshit-out’ concepts. Employing a multi-scalar modeling approach, the research examines Airbnb pricing dynamics across several U.S. cities, starting with Manhattan (USA) as an illustrative case. A subsequent large-scale application to additional metropolitan areas utilizes a combination of hedonic price modeling, social media data, and AI-generated urban descriptions, including a Shapley decomposition analysis. This interdisciplinary integration provides actionable insights into neighborhood attractiveness and pricing mechanisms, while highlighting methodological and empirical contributions to the broader field of information management. By employing the relationship between AI-driven textual data and quantitative modeling, this research provides added value in analyzing urban information systems and their application to digital platforms.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.