{"title":"采用TIG PBF-AAM方法制备具有可变B4C梯度策略的B4C- aisi 434l钢功能梯度薄壁结构","authors":"M.D. Aseef Khan, Manoj Masanta","doi":"10.1016/j.ijrmhm.2025.107210","DOIUrl":null,"url":null,"abstract":"<div><div>Functionally graded (FG) thin wall structures of B<sub>4</sub>C-AISI 434 L SS composite have been fabricated using three different B<sub>4</sub>C gradient strategies (namely smooth, moderate, and steep) by Tungsten Inert Gas aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) method. For all different strategies, towards the building direction, substantial variations in the grain structure, phase composition, microhardness, and wear- and scratch- resistance were witnessed. The SEM images and the XRD analysis of the FG structures indicate the dilution of B<sub>4</sub>C and formation of iron boride (Fe<sub>2</sub>B, FeB) phases, which is largely influenced by the B<sub>4</sub>C proportion in a specific region. An increased B<sub>4</sub>C content towards the building direction unveiled a higher fraction of unreacted B<sub>4</sub>C phase, which augmented the hardness and wear resistance of the gradient structure expressively. Due to gradual transition in the microstructure, a steady increment in the hardness value was perceived for smooth gradient, and accordingly minimum wear loss (27 μm, 0.00243 g, or 1.45 × 10<sup>−4</sup> mm<sup>3</sup>/N-m) was recorded. While, the moderate and steep gradient structures exhibited sharp transitions of microhardness at the interfaces, and amplified the wear loss consequently. This work demonstrated the potential of TIG PBF-AAM method to fabricate FG parts with tailored microstructure and mechanical properties required for tribological applications, where a hard surface and impact-tolerant base are foremost significant.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"131 ","pages":"Article 107210"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"B4C-AISI 434 L steel functionally graded thin wall structures with variable B4C gradient strategies manufactured by TIG PBF-AAM method\",\"authors\":\"M.D. Aseef Khan, Manoj Masanta\",\"doi\":\"10.1016/j.ijrmhm.2025.107210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functionally graded (FG) thin wall structures of B<sub>4</sub>C-AISI 434 L SS composite have been fabricated using three different B<sub>4</sub>C gradient strategies (namely smooth, moderate, and steep) by Tungsten Inert Gas aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) method. For all different strategies, towards the building direction, substantial variations in the grain structure, phase composition, microhardness, and wear- and scratch- resistance were witnessed. The SEM images and the XRD analysis of the FG structures indicate the dilution of B<sub>4</sub>C and formation of iron boride (Fe<sub>2</sub>B, FeB) phases, which is largely influenced by the B<sub>4</sub>C proportion in a specific region. An increased B<sub>4</sub>C content towards the building direction unveiled a higher fraction of unreacted B<sub>4</sub>C phase, which augmented the hardness and wear resistance of the gradient structure expressively. Due to gradual transition in the microstructure, a steady increment in the hardness value was perceived for smooth gradient, and accordingly minimum wear loss (27 μm, 0.00243 g, or 1.45 × 10<sup>−4</sup> mm<sup>3</sup>/N-m) was recorded. While, the moderate and steep gradient structures exhibited sharp transitions of microhardness at the interfaces, and amplified the wear loss consequently. This work demonstrated the potential of TIG PBF-AAM method to fabricate FG parts with tailored microstructure and mechanical properties required for tribological applications, where a hard surface and impact-tolerant base are foremost significant.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"131 \",\"pages\":\"Article 107210\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436825001751\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001751","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
B4C-AISI 434 L steel functionally graded thin wall structures with variable B4C gradient strategies manufactured by TIG PBF-AAM method
Functionally graded (FG) thin wall structures of B4C-AISI 434 L SS composite have been fabricated using three different B4C gradient strategies (namely smooth, moderate, and steep) by Tungsten Inert Gas aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) method. For all different strategies, towards the building direction, substantial variations in the grain structure, phase composition, microhardness, and wear- and scratch- resistance were witnessed. The SEM images and the XRD analysis of the FG structures indicate the dilution of B4C and formation of iron boride (Fe2B, FeB) phases, which is largely influenced by the B4C proportion in a specific region. An increased B4C content towards the building direction unveiled a higher fraction of unreacted B4C phase, which augmented the hardness and wear resistance of the gradient structure expressively. Due to gradual transition in the microstructure, a steady increment in the hardness value was perceived for smooth gradient, and accordingly minimum wear loss (27 μm, 0.00243 g, or 1.45 × 10−4 mm3/N-m) was recorded. While, the moderate and steep gradient structures exhibited sharp transitions of microhardness at the interfaces, and amplified the wear loss consequently. This work demonstrated the potential of TIG PBF-AAM method to fabricate FG parts with tailored microstructure and mechanical properties required for tribological applications, where a hard surface and impact-tolerant base are foremost significant.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.