Dafang Huang , Jie Li , Suiyi Li , Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen
{"title":"自密实超强木材","authors":"Dafang Huang , Jie Li , Suiyi Li , Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen","doi":"10.1016/j.jobab.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m<sup>2</sup>), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 199-208"},"PeriodicalIF":20.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-densified super-strong wood\",\"authors\":\"Dafang Huang , Jie Li , Suiyi Li , Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen\",\"doi\":\"10.1016/j.jobab.2025.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m<sup>2</sup>), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.</div></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":\"10 2\",\"pages\":\"Pages 199-208\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969825000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969825000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m2), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.