{"title":"惯性液滴中射流形成动力学","authors":"Arahata Senapati , Gaurav Singh , Arnab Atta , Rajaram Lakkaraju","doi":"10.1016/j.ijmultiphaseflow.2025.105242","DOIUrl":null,"url":null,"abstract":"<div><div>We present a numerical investigation of a suddenly accelerated droplet in a surrounding viscous liquid, which exposes the droplet to inertial forces until it eventually comes to a stop. Using the volume of fluid method, we observed that as the droplet moves, it generates a toroidal vortex, and a high-speed liquid jet develops at its rear, with speeds exceeding the droplet’s speed by at least an order of magnitude. Our study focused on droplet deformation and liquid jet characteristics across a range of Weber numbers (<span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>) from 13 to 200 and Ohnesorge numbers (<span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>) from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Based on the characteristics of the jets, we classified them into three categories: (1) weak jets that cannot penetrate the rear side of the droplet for <span><math><mrow><mn>13</mn><mo><</mo><mi>W</mi><mi>e</mi><mo><</mo><mn>23</mn></mrow></math></span>, (2) short jets that can penetrate the droplet for <span><math><mrow><mn>23</mn><mo><</mo><mi>W</mi><mi>e</mi><mo><</mo><mn>50</mn></mrow></math></span>, and (3) strong jets that rupture the droplet for <span><math><mrow><mi>W</mi><mi>e</mi><mo>></mo><mn>50</mn></mrow></math></span>. Our results indicate that droplet deformation is independent of the Ohnesorge number (<span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>). We developed a semi-analytical theory based on the energy analysis to predict the maximum jet speed.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"189 ","pages":"Article 105242"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of jet formation in inertial droplet\",\"authors\":\"Arahata Senapati , Gaurav Singh , Arnab Atta , Rajaram Lakkaraju\",\"doi\":\"10.1016/j.ijmultiphaseflow.2025.105242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a numerical investigation of a suddenly accelerated droplet in a surrounding viscous liquid, which exposes the droplet to inertial forces until it eventually comes to a stop. Using the volume of fluid method, we observed that as the droplet moves, it generates a toroidal vortex, and a high-speed liquid jet develops at its rear, with speeds exceeding the droplet’s speed by at least an order of magnitude. Our study focused on droplet deformation and liquid jet characteristics across a range of Weber numbers (<span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>) from 13 to 200 and Ohnesorge numbers (<span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>) from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Based on the characteristics of the jets, we classified them into three categories: (1) weak jets that cannot penetrate the rear side of the droplet for <span><math><mrow><mn>13</mn><mo><</mo><mi>W</mi><mi>e</mi><mo><</mo><mn>23</mn></mrow></math></span>, (2) short jets that can penetrate the droplet for <span><math><mrow><mn>23</mn><mo><</mo><mi>W</mi><mi>e</mi><mo><</mo><mn>50</mn></mrow></math></span>, and (3) strong jets that rupture the droplet for <span><math><mrow><mi>W</mi><mi>e</mi><mo>></mo><mn>50</mn></mrow></math></span>. Our results indicate that droplet deformation is independent of the Ohnesorge number (<span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>). We developed a semi-analytical theory based on the energy analysis to predict the maximum jet speed.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"189 \",\"pages\":\"Article 105242\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030193222500120X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222500120X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
We present a numerical investigation of a suddenly accelerated droplet in a surrounding viscous liquid, which exposes the droplet to inertial forces until it eventually comes to a stop. Using the volume of fluid method, we observed that as the droplet moves, it generates a toroidal vortex, and a high-speed liquid jet develops at its rear, with speeds exceeding the droplet’s speed by at least an order of magnitude. Our study focused on droplet deformation and liquid jet characteristics across a range of Weber numbers () from 13 to 200 and Ohnesorge numbers () from to . Based on the characteristics of the jets, we classified them into three categories: (1) weak jets that cannot penetrate the rear side of the droplet for , (2) short jets that can penetrate the droplet for , and (3) strong jets that rupture the droplet for . Our results indicate that droplet deformation is independent of the Ohnesorge number (). We developed a semi-analytical theory based on the energy analysis to predict the maximum jet speed.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.