新型和非传统碱活性材料的反应机理和碱-硅反应行为的表征

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Shubham Mishra , Farshad Rajabipour , Jan Olek , Sulapha Peethamparan
{"title":"新型和非传统碱活性材料的反应机理和碱-硅反应行为的表征","authors":"Shubham Mishra ,&nbsp;Farshad Rajabipour ,&nbsp;Jan Olek ,&nbsp;Sulapha Peethamparan","doi":"10.1016/j.cemconres.2025.107914","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the Alkali-Silica Reaction (ASR) behavior of non-traditional alkali-activated materials (NAAMs) utilizing unconventional precursors, including calcined clays (CC), volcanic ashes (VA), ground bottom ashes (GBA), and fluidized bed combustion ashes (FBC). Using ASTM-based accelerated and non-accelerated methods, ASR expansions were assessed across aggregates with varying reactivity (R0, R1, R2, and R3). The research reveals a critical interaction between initial drying shrinkage and ASR expansion, where shrinkage offsets early ASR-induced expansions. Microstructural analysis via SEM and EDS highlights unique alumina-enriched ASR products with low-viscosity and limited expansion potential, attributed to the absence of calcium-rich gels. The study evaluates alternative ASR prediction methods, finding moisture transport parameters unreliable but pore solution ionic composition, especially high alumina levels, as strong indicators of ASR mitigation. A novel ASR Inhibition Efficiency Score (AES) quantifies NAAMs’ mitigation capacity, showcasing the exceptional performance of CC- and GBA-based NAAMs against ASR in highly reactive aggregates.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"195 ","pages":"Article 107914"},"PeriodicalIF":10.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the mechanisms and alkali-silica reaction behavior of novel and non-traditional alkali-activated materials\",\"authors\":\"Shubham Mishra ,&nbsp;Farshad Rajabipour ,&nbsp;Jan Olek ,&nbsp;Sulapha Peethamparan\",\"doi\":\"10.1016/j.cemconres.2025.107914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the Alkali-Silica Reaction (ASR) behavior of non-traditional alkali-activated materials (NAAMs) utilizing unconventional precursors, including calcined clays (CC), volcanic ashes (VA), ground bottom ashes (GBA), and fluidized bed combustion ashes (FBC). Using ASTM-based accelerated and non-accelerated methods, ASR expansions were assessed across aggregates with varying reactivity (R0, R1, R2, and R3). The research reveals a critical interaction between initial drying shrinkage and ASR expansion, where shrinkage offsets early ASR-induced expansions. Microstructural analysis via SEM and EDS highlights unique alumina-enriched ASR products with low-viscosity and limited expansion potential, attributed to the absence of calcium-rich gels. The study evaluates alternative ASR prediction methods, finding moisture transport parameters unreliable but pore solution ionic composition, especially high alumina levels, as strong indicators of ASR mitigation. A novel ASR Inhibition Efficiency Score (AES) quantifies NAAMs’ mitigation capacity, showcasing the exceptional performance of CC- and GBA-based NAAMs against ASR in highly reactive aggregates.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"195 \",\"pages\":\"Article 107914\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625001334\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625001334","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了非传统碱活性材料(NAAMs)的碱-硅反应(ASR)行为,该材料使用了非传统前驱体,包括煅烧粘土(CC)、火山灰(VA)、底灰(GBA)和流化床燃烧灰(FBC)。使用基于astm的加速和非加速方法,在不同反应性(R0, R1, R2和R3)的聚合体中评估ASR扩展。研究揭示了初始干燥收缩和ASR膨胀之间的关键相互作用,其中收缩抵消了早期ASR引起的膨胀。通过SEM和EDS进行的微观结构分析表明,由于缺乏富钙凝胶,这种独特的富铝ASR产品具有低粘度和有限的膨胀潜力。该研究评估了其他ASR预测方法,发现水分传输参数不可靠,但孔隙溶液离子组成,特别是高氧化铝水平,是ASR缓解的有力指标。一种新的ASR抑制效率评分(AES)量化了NAAMs的缓解能力,显示了基于CC和gba的NAAMs在高活性聚集体中对ASR的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing the mechanisms and alkali-silica reaction behavior of novel and non-traditional alkali-activated materials
This study investigates the Alkali-Silica Reaction (ASR) behavior of non-traditional alkali-activated materials (NAAMs) utilizing unconventional precursors, including calcined clays (CC), volcanic ashes (VA), ground bottom ashes (GBA), and fluidized bed combustion ashes (FBC). Using ASTM-based accelerated and non-accelerated methods, ASR expansions were assessed across aggregates with varying reactivity (R0, R1, R2, and R3). The research reveals a critical interaction between initial drying shrinkage and ASR expansion, where shrinkage offsets early ASR-induced expansions. Microstructural analysis via SEM and EDS highlights unique alumina-enriched ASR products with low-viscosity and limited expansion potential, attributed to the absence of calcium-rich gels. The study evaluates alternative ASR prediction methods, finding moisture transport parameters unreliable but pore solution ionic composition, especially high alumina levels, as strong indicators of ASR mitigation. A novel ASR Inhibition Efficiency Score (AES) quantifies NAAMs’ mitigation capacity, showcasing the exceptional performance of CC- and GBA-based NAAMs against ASR in highly reactive aggregates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信