二维MoS2/Ti3C2 MXene纳米复合材料在碱性介质中的高效析氢反应

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rachmadani Hasanah , Yoga Romdoni , Vivi Fauzia , A. Arifutzzaman , Farihahusnah Hussin , Mohamed Kheireddine Aroua , Munawar Khalil
{"title":"二维MoS2/Ti3C2 MXene纳米复合材料在碱性介质中的高效析氢反应","authors":"Rachmadani Hasanah ,&nbsp;Yoga Romdoni ,&nbsp;Vivi Fauzia ,&nbsp;A. Arifutzzaman ,&nbsp;Farihahusnah Hussin ,&nbsp;Mohamed Kheireddine Aroua ,&nbsp;Munawar Khalil","doi":"10.1016/j.materresbull.2025.113514","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports an investigation on the fabrication of MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposites via a hydrothermal route. Based on the result, the composite exhibited 2D/2D flower-like MoS<sub>2</sub> layers stacked on the surface of Ti<sub>3</sub>C<sub>2</sub> MXene nanosheets. The integration of MoS<sub>2</sub> and Ti<sub>3</sub>C<sub>2</sub> MXene significantly enhances electrocatalytic activity of hydrogen evolution reaction in alkaline electrolytes. Electrochemical studies reveal that the MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposites exhibits a low overpotential and Tafel slope values of 421 mV and 217 mV dec<sup>−1</sup>, respectively. Electrochemical impedance spectroscopy analysis also reveals a significantly reduced charge transfer resistance (R<sub>ct</sub>) of 1.66 kΩ for nanocomposite. Electrochemical surface area (ECSA) of the nanocomposite, estimated from the electrochemical double-layer capacitance (C<sub>dl</sub>), is 0.127 mF cm<sup>−2</sup>. Notably, the MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposites exhibits excellent long-term stability. These results demonstrate the significant capacity of MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposite as a highly effective electrocatalyst for HER and its contribution to sustainable energy production.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113514"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimension MoS2/Ti3C2 MXene nanocomposite for an efficient hydrogen evolution reaction in alkaline media\",\"authors\":\"Rachmadani Hasanah ,&nbsp;Yoga Romdoni ,&nbsp;Vivi Fauzia ,&nbsp;A. Arifutzzaman ,&nbsp;Farihahusnah Hussin ,&nbsp;Mohamed Kheireddine Aroua ,&nbsp;Munawar Khalil\",\"doi\":\"10.1016/j.materresbull.2025.113514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports an investigation on the fabrication of MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposites via a hydrothermal route. Based on the result, the composite exhibited 2D/2D flower-like MoS<sub>2</sub> layers stacked on the surface of Ti<sub>3</sub>C<sub>2</sub> MXene nanosheets. The integration of MoS<sub>2</sub> and Ti<sub>3</sub>C<sub>2</sub> MXene significantly enhances electrocatalytic activity of hydrogen evolution reaction in alkaline electrolytes. Electrochemical studies reveal that the MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposites exhibits a low overpotential and Tafel slope values of 421 mV and 217 mV dec<sup>−1</sup>, respectively. Electrochemical impedance spectroscopy analysis also reveals a significantly reduced charge transfer resistance (R<sub>ct</sub>) of 1.66 kΩ for nanocomposite. Electrochemical surface area (ECSA) of the nanocomposite, estimated from the electrochemical double-layer capacitance (C<sub>dl</sub>), is 0.127 mF cm<sup>−2</sup>. Notably, the MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposites exhibits excellent long-term stability. These results demonstrate the significant capacity of MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposite as a highly effective electrocatalyst for HER and its contribution to sustainable energy production.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"190 \",\"pages\":\"Article 113514\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825002223\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002223","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了水热法制备MoS2/Ti3C2 MXene纳米复合材料。基于该结果,复合材料在Ti3C2 MXene纳米片表面呈现出2D/2D花状MoS2层。MoS2和ti3c2mxene的集成显著提高了碱性电解质中析氢反应的电催化活性。电化学研究表明,MoS2/Ti3C2 MXene纳米复合材料具有较低的过电位,Tafel斜率分别为421 mV和217 mV dec−1。电化学阻抗谱分析还表明,纳米复合材料的电荷转移电阻(Rct)显著降低,为1.66 kΩ。通过电化学双层电容(Cdl)估算,纳米复合材料的电化学表面积(ECSA)为0.127 mF cm−2。值得注意的是,MoS2/Ti3C2 MXene纳米复合材料表现出优异的长期稳定性。这些结果证明了MoS2/Ti3C2 MXene纳米复合材料作为一种高效的HER电催化剂的显著能力及其对可持续能源生产的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-dimension MoS2/Ti3C2 MXene nanocomposite for an efficient hydrogen evolution reaction in alkaline media

Two-dimension MoS2/Ti3C2 MXene nanocomposite for an efficient hydrogen evolution reaction in alkaline media
This study reports an investigation on the fabrication of MoS2/Ti3C2 MXene nanocomposites via a hydrothermal route. Based on the result, the composite exhibited 2D/2D flower-like MoS2 layers stacked on the surface of Ti3C2 MXene nanosheets. The integration of MoS2 and Ti3C2 MXene significantly enhances electrocatalytic activity of hydrogen evolution reaction in alkaline electrolytes. Electrochemical studies reveal that the MoS2/Ti3C2 MXene nanocomposites exhibits a low overpotential and Tafel slope values of 421 mV and 217 mV dec−1, respectively. Electrochemical impedance spectroscopy analysis also reveals a significantly reduced charge transfer resistance (Rct) of 1.66 kΩ for nanocomposite. Electrochemical surface area (ECSA) of the nanocomposite, estimated from the electrochemical double-layer capacitance (Cdl), is 0.127 mF cm−2. Notably, the MoS2/Ti3C2 MXene nanocomposites exhibits excellent long-term stability. These results demonstrate the significant capacity of MoS2/Ti3C2 MXene nanocomposite as a highly effective electrocatalyst for HER and its contribution to sustainable energy production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信