Yanbo Wang, Bochun Liang, Dedi Li, Yiqiao Wang, Chuan Li, Huilin Cui, Rong Zhang, Shuo Yang, Ze Chen, Qing Li, Funian Mo, Jun Fan, Chunyi Zhi
{"title":"用于长寿命水性锌电池的水凝胶电解质设计,在90°C下实现99%的库仑效率","authors":"Yanbo Wang, Bochun Liang, Dedi Li, Yiqiao Wang, Chuan Li, Huilin Cui, Rong Zhang, Shuo Yang, Ze Chen, Qing Li, Funian Mo, Jun Fan, Chunyi Zhi","doi":"10.1016/j.joule.2025.101944","DOIUrl":null,"url":null,"abstract":"Due to abundant water molecules in conventional aqueous electrolytes and hydrogels, the high activity of water molecules remains a fundamental barrier in zinc batteries (ZBs), especially when operating in aggressive environments (over 60°C). Herein, we design a hydrogel electrolyte via elaborate molecular engineering to optimize ion transport and electrochemical stability. Specifically, the Zn<sup>2+</sup> transport can be efficiently expressed under a reduced water content condition with water-assisted functions and flexible polymer chains. Moreover, the decreased water content makes it possible to reduce water reactivity. The Zn||Zn and Zn||Ti batteries can stably and reversibly cycle (∼100% Coulombic efficiency) at room temperature and (∼99% Coulombic efficiency) at 90°C, respectively. The full batteries show remarkable cycling stability at room temperature and even at a challenging temperature of 90°C (∼100% Coulombic efficiency). This study offers an essential development in environment-adaptable aqueous batteries with highly stable and reversible performances.","PeriodicalId":343,"journal":{"name":"Joule","volume":"104 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogel electrolyte design for long-lifespan aqueous zinc batteries to realize a 99% Coulombic efficiency at 90°C\",\"authors\":\"Yanbo Wang, Bochun Liang, Dedi Li, Yiqiao Wang, Chuan Li, Huilin Cui, Rong Zhang, Shuo Yang, Ze Chen, Qing Li, Funian Mo, Jun Fan, Chunyi Zhi\",\"doi\":\"10.1016/j.joule.2025.101944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to abundant water molecules in conventional aqueous electrolytes and hydrogels, the high activity of water molecules remains a fundamental barrier in zinc batteries (ZBs), especially when operating in aggressive environments (over 60°C). Herein, we design a hydrogel electrolyte via elaborate molecular engineering to optimize ion transport and electrochemical stability. Specifically, the Zn<sup>2+</sup> transport can be efficiently expressed under a reduced water content condition with water-assisted functions and flexible polymer chains. Moreover, the decreased water content makes it possible to reduce water reactivity. The Zn||Zn and Zn||Ti batteries can stably and reversibly cycle (∼100% Coulombic efficiency) at room temperature and (∼99% Coulombic efficiency) at 90°C, respectively. The full batteries show remarkable cycling stability at room temperature and even at a challenging temperature of 90°C (∼100% Coulombic efficiency). This study offers an essential development in environment-adaptable aqueous batteries with highly stable and reversible performances.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.101944\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydrogel electrolyte design for long-lifespan aqueous zinc batteries to realize a 99% Coulombic efficiency at 90°C
Due to abundant water molecules in conventional aqueous electrolytes and hydrogels, the high activity of water molecules remains a fundamental barrier in zinc batteries (ZBs), especially when operating in aggressive environments (over 60°C). Herein, we design a hydrogel electrolyte via elaborate molecular engineering to optimize ion transport and electrochemical stability. Specifically, the Zn2+ transport can be efficiently expressed under a reduced water content condition with water-assisted functions and flexible polymer chains. Moreover, the decreased water content makes it possible to reduce water reactivity. The Zn||Zn and Zn||Ti batteries can stably and reversibly cycle (∼100% Coulombic efficiency) at room temperature and (∼99% Coulombic efficiency) at 90°C, respectively. The full batteries show remarkable cycling stability at room temperature and even at a challenging temperature of 90°C (∼100% Coulombic efficiency). This study offers an essential development in environment-adaptable aqueous batteries with highly stable and reversible performances.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.