用于长寿命水性锌电池的水凝胶电解质设计,在90°C下实现99%的库仑效率

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-04-30 DOI:10.1016/j.joule.2025.101944
Yanbo Wang, Bochun Liang, Dedi Li, Yiqiao Wang, Chuan Li, Huilin Cui, Rong Zhang, Shuo Yang, Ze Chen, Qing Li, Funian Mo, Jun Fan, Chunyi Zhi
{"title":"用于长寿命水性锌电池的水凝胶电解质设计,在90°C下实现99%的库仑效率","authors":"Yanbo Wang, Bochun Liang, Dedi Li, Yiqiao Wang, Chuan Li, Huilin Cui, Rong Zhang, Shuo Yang, Ze Chen, Qing Li, Funian Mo, Jun Fan, Chunyi Zhi","doi":"10.1016/j.joule.2025.101944","DOIUrl":null,"url":null,"abstract":"Due to abundant water molecules in conventional aqueous electrolytes and hydrogels, the high activity of water molecules remains a fundamental barrier in zinc batteries (ZBs), especially when operating in aggressive environments (over 60°C). Herein, we design a hydrogel electrolyte via elaborate molecular engineering to optimize ion transport and electrochemical stability. Specifically, the Zn<sup>2+</sup> transport can be efficiently expressed under a reduced water content condition with water-assisted functions and flexible polymer chains. Moreover, the decreased water content makes it possible to reduce water reactivity. The Zn||Zn and Zn||Ti batteries can stably and reversibly cycle (∼100% Coulombic efficiency) at room temperature and (∼99% Coulombic efficiency) at 90°C, respectively. The full batteries show remarkable cycling stability at room temperature and even at a challenging temperature of 90°C (∼100% Coulombic efficiency). This study offers an essential development in environment-adaptable aqueous batteries with highly stable and reversible performances.","PeriodicalId":343,"journal":{"name":"Joule","volume":"104 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogel electrolyte design for long-lifespan aqueous zinc batteries to realize a 99% Coulombic efficiency at 90°C\",\"authors\":\"Yanbo Wang, Bochun Liang, Dedi Li, Yiqiao Wang, Chuan Li, Huilin Cui, Rong Zhang, Shuo Yang, Ze Chen, Qing Li, Funian Mo, Jun Fan, Chunyi Zhi\",\"doi\":\"10.1016/j.joule.2025.101944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to abundant water molecules in conventional aqueous electrolytes and hydrogels, the high activity of water molecules remains a fundamental barrier in zinc batteries (ZBs), especially when operating in aggressive environments (over 60°C). Herein, we design a hydrogel electrolyte via elaborate molecular engineering to optimize ion transport and electrochemical stability. Specifically, the Zn<sup>2+</sup> transport can be efficiently expressed under a reduced water content condition with water-assisted functions and flexible polymer chains. Moreover, the decreased water content makes it possible to reduce water reactivity. The Zn||Zn and Zn||Ti batteries can stably and reversibly cycle (∼100% Coulombic efficiency) at room temperature and (∼99% Coulombic efficiency) at 90°C, respectively. The full batteries show remarkable cycling stability at room temperature and even at a challenging temperature of 90°C (∼100% Coulombic efficiency). This study offers an essential development in environment-adaptable aqueous batteries with highly stable and reversible performances.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.101944\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于传统的水电解质和水凝胶中含有丰富的水分子,因此水分子的高活性仍然是锌电池(zb)的基本障碍,特别是在恶劣环境(超过60°C)下工作时。在此,我们通过精细的分子工程设计一种水凝胶电解质,以优化离子传输和电化学稳定性。具体来说,在低含水量条件下,通过水辅助功能和柔性聚合物链可以有效地表达Zn2+输运。此外,减少的水含量使得降低水反应性成为可能。Zn||Zn和Zn||Ti电池分别在室温(~ 100%库仑效率)和90℃(~ 99%库仑效率)下稳定可逆循环。完整的电池在室温下甚至在90°C的挑战性温度下(~ 100%库仑效率)都表现出显著的循环稳定性。该研究为具有高度稳定和可逆性能的环境适应性水电池提供了重要的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogel electrolyte design for long-lifespan aqueous zinc batteries to realize a 99% Coulombic efficiency at 90°C

Hydrogel electrolyte design for long-lifespan aqueous zinc batteries to realize a 99% Coulombic efficiency at 90°C
Due to abundant water molecules in conventional aqueous electrolytes and hydrogels, the high activity of water molecules remains a fundamental barrier in zinc batteries (ZBs), especially when operating in aggressive environments (over 60°C). Herein, we design a hydrogel electrolyte via elaborate molecular engineering to optimize ion transport and electrochemical stability. Specifically, the Zn2+ transport can be efficiently expressed under a reduced water content condition with water-assisted functions and flexible polymer chains. Moreover, the decreased water content makes it possible to reduce water reactivity. The Zn||Zn and Zn||Ti batteries can stably and reversibly cycle (∼100% Coulombic efficiency) at room temperature and (∼99% Coulombic efficiency) at 90°C, respectively. The full batteries show remarkable cycling stability at room temperature and even at a challenging temperature of 90°C (∼100% Coulombic efficiency). This study offers an essential development in environment-adaptable aqueous batteries with highly stable and reversible performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信