Robin Girod, Evgenii Vlasov, Luis M. Liz-Marzán, Sara Bals
{"title":"手性纳米颗粒的三维电子显微镜:从成像到测量","authors":"Robin Girod, Evgenii Vlasov, Luis M. Liz-Marzán, Sara Bals","doi":"10.1021/acs.nanolett.5c01640","DOIUrl":null,"url":null,"abstract":"The increasing interest in plasmonic nanoparticles with intrinsic chirality, i.e., reduced symmetry and strong optical activity, calls for characterization beyond qualitative imaging. In this context, three-dimensional electron microscopy (3D EM), which provides images containing information on the particles’ surface and may even retrieve the explicit 3D shapes, is seeing exciting developments and applications. In this Mini-Review, we focus on scanning electron microscopy (SEM), electron tomography, and secondary electron electron-beam-induced current (SEEBIC). We highlight the recent advances in these 3D EM techniques and the analysis of their data that relate to chiral metallic nanoparticles. The study of shape–property relationships, in particular by quantitatively analyzing geometric chirality and informing electromagnetic simulations, is covered. New ways in which 3D characterization is revealing the growth pathways of the nanoparticles are also presented. Finally, we provide an outlook on future opportunities for 3D EM to further guide the understanding and development of (chiral) nanoparticles.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"44 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Electron Microscopy of Chiral Nanoparticles: From Imaging to Measuring\",\"authors\":\"Robin Girod, Evgenii Vlasov, Luis M. Liz-Marzán, Sara Bals\",\"doi\":\"10.1021/acs.nanolett.5c01640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest in plasmonic nanoparticles with intrinsic chirality, i.e., reduced symmetry and strong optical activity, calls for characterization beyond qualitative imaging. In this context, three-dimensional electron microscopy (3D EM), which provides images containing information on the particles’ surface and may even retrieve the explicit 3D shapes, is seeing exciting developments and applications. In this Mini-Review, we focus on scanning electron microscopy (SEM), electron tomography, and secondary electron electron-beam-induced current (SEEBIC). We highlight the recent advances in these 3D EM techniques and the analysis of their data that relate to chiral metallic nanoparticles. The study of shape–property relationships, in particular by quantitatively analyzing geometric chirality and informing electromagnetic simulations, is covered. New ways in which 3D characterization is revealing the growth pathways of the nanoparticles are also presented. Finally, we provide an outlook on future opportunities for 3D EM to further guide the understanding and development of (chiral) nanoparticles.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01640\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01640","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-Dimensional Electron Microscopy of Chiral Nanoparticles: From Imaging to Measuring
The increasing interest in plasmonic nanoparticles with intrinsic chirality, i.e., reduced symmetry and strong optical activity, calls for characterization beyond qualitative imaging. In this context, three-dimensional electron microscopy (3D EM), which provides images containing information on the particles’ surface and may even retrieve the explicit 3D shapes, is seeing exciting developments and applications. In this Mini-Review, we focus on scanning electron microscopy (SEM), electron tomography, and secondary electron electron-beam-induced current (SEEBIC). We highlight the recent advances in these 3D EM techniques and the analysis of their data that relate to chiral metallic nanoparticles. The study of shape–property relationships, in particular by quantitatively analyzing geometric chirality and informing electromagnetic simulations, is covered. New ways in which 3D characterization is revealing the growth pathways of the nanoparticles are also presented. Finally, we provide an outlook on future opportunities for 3D EM to further guide the understanding and development of (chiral) nanoparticles.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.