Sabina Chubanava, Iuliia Karavaeva, Amy M. Ehrlich, Roger M. Justicia, Astrid L. Basse, Ivan Kulik, Emilie Dalbram, Danial Ahwazi, Samuel R. Heaselgrave, Kajetan Trošt, Ben Stocks, Ondřej Hodek, Raissa N. Rodrigues, Jesper F. Havelund, Farina L. Schlabs, Steen Larsen, Caio Y. Yonamine, Carlos Henriquez-Olguín, Daniela Giustarini, Ranieri Rossi, Jonas T. Treebak
{"title":"骨骼肌中NAD的消耗不会损害肌肉功能或加速衰老","authors":"Sabina Chubanava, Iuliia Karavaeva, Amy M. Ehrlich, Roger M. Justicia, Astrid L. Basse, Ivan Kulik, Emilie Dalbram, Danial Ahwazi, Samuel R. Heaselgrave, Kajetan Trošt, Ben Stocks, Ondřej Hodek, Raissa N. Rodrigues, Jesper F. Havelund, Farina L. Schlabs, Steen Larsen, Caio Y. Yonamine, Carlos Henriquez-Olguín, Daniela Giustarini, Ranieri Rossi, Jonas T. Treebak","doi":"10.1016/j.cmet.2025.04.002","DOIUrl":null,"url":null,"abstract":"Nicotinamide adenine dinucleotide (NAD) is a ubiquitous electron carrier essential for energy metabolism and post-translational modification of numerous regulatory proteins. Dysregulations of NAD metabolism are widely regarded as detrimental to health, with NAD depletion commonly implicated in aging. However, the extent to which cellular NAD concentration can decline without adverse consequences remains unclear. To investigate this, we generated a mouse model in which nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD<sup>+</sup> biosynthesis was disrupted in adult skeletal muscle. The intervention resulted in an 85% reduction in muscle NAD<sup>+</sup> abundance while maintaining tissue integrity and functionality, as demonstrated by preserved muscle morphology, contractility, and exercise tolerance. This absence of functional impairments was further supported by intact mitochondrial respiratory capacity and unaltered muscle transcriptomic and proteomic profiles. Furthermore, lifelong NAD depletion did not accelerate muscle aging or impair whole-body metabolism. Collectively, these findings suggest that NAD depletion does not contribute to age-related decline in skeletal muscle function.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"105 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging\",\"authors\":\"Sabina Chubanava, Iuliia Karavaeva, Amy M. Ehrlich, Roger M. Justicia, Astrid L. Basse, Ivan Kulik, Emilie Dalbram, Danial Ahwazi, Samuel R. Heaselgrave, Kajetan Trošt, Ben Stocks, Ondřej Hodek, Raissa N. Rodrigues, Jesper F. Havelund, Farina L. Schlabs, Steen Larsen, Caio Y. Yonamine, Carlos Henriquez-Olguín, Daniela Giustarini, Ranieri Rossi, Jonas T. Treebak\",\"doi\":\"10.1016/j.cmet.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nicotinamide adenine dinucleotide (NAD) is a ubiquitous electron carrier essential for energy metabolism and post-translational modification of numerous regulatory proteins. Dysregulations of NAD metabolism are widely regarded as detrimental to health, with NAD depletion commonly implicated in aging. However, the extent to which cellular NAD concentration can decline without adverse consequences remains unclear. To investigate this, we generated a mouse model in which nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD<sup>+</sup> biosynthesis was disrupted in adult skeletal muscle. The intervention resulted in an 85% reduction in muscle NAD<sup>+</sup> abundance while maintaining tissue integrity and functionality, as demonstrated by preserved muscle morphology, contractility, and exercise tolerance. This absence of functional impairments was further supported by intact mitochondrial respiratory capacity and unaltered muscle transcriptomic and proteomic profiles. Furthermore, lifelong NAD depletion did not accelerate muscle aging or impair whole-body metabolism. Collectively, these findings suggest that NAD depletion does not contribute to age-related decline in skeletal muscle function.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2025.04.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.04.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous electron carrier essential for energy metabolism and post-translational modification of numerous regulatory proteins. Dysregulations of NAD metabolism are widely regarded as detrimental to health, with NAD depletion commonly implicated in aging. However, the extent to which cellular NAD concentration can decline without adverse consequences remains unclear. To investigate this, we generated a mouse model in which nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ biosynthesis was disrupted in adult skeletal muscle. The intervention resulted in an 85% reduction in muscle NAD+ abundance while maintaining tissue integrity and functionality, as demonstrated by preserved muscle morphology, contractility, and exercise tolerance. This absence of functional impairments was further supported by intact mitochondrial respiratory capacity and unaltered muscle transcriptomic and proteomic profiles. Furthermore, lifelong NAD depletion did not accelerate muscle aging or impair whole-body metabolism. Collectively, these findings suggest that NAD depletion does not contribute to age-related decline in skeletal muscle function.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.