化学工业能减缓灾难性火山爆发造成的全球快速降温吗?

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-04-30 DOI:10.1002/aic.18854
David S. Sholl
{"title":"化学工业能减缓灾难性火山爆发造成的全球快速降温吗?","authors":"David S. Sholl","doi":"10.1002/aic.18854","DOIUrl":null,"url":null,"abstract":"Estimates based on historical data place the probability of a catastrophic volcanic eruption in the next 100 years at around one in six. Large volcanic eruptions can lead to significant global cooling for 2–4 years, with potentially devastating impacts on global agriculture. In principle, the negative impacts of volcano-induced cooling could be reduced by deliberate emission of short-lived chemicals with high greenhouse gas intensity into the atmosphere. This article examines the physical feasibility of this concept for a wide range of short-lived climate pollutants, using the global chemical industry for context. Deliberate emission of any known chemical species would require gigatons of material, which would have to be produced and stored far in advance of the volcanic event. The cost of this undertaking would be immense. In addition to these daunting logistical challenges, a range of other uncertainties and complications associated with this concept are discussed.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"38 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Could the chemical industry mitigate rapid global cooling from a catastrophic volcanic eruption?\",\"authors\":\"David S. Sholl\",\"doi\":\"10.1002/aic.18854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimates based on historical data place the probability of a catastrophic volcanic eruption in the next 100 years at around one in six. Large volcanic eruptions can lead to significant global cooling for 2–4 years, with potentially devastating impacts on global agriculture. In principle, the negative impacts of volcano-induced cooling could be reduced by deliberate emission of short-lived chemicals with high greenhouse gas intensity into the atmosphere. This article examines the physical feasibility of this concept for a wide range of short-lived climate pollutants, using the global chemical industry for context. Deliberate emission of any known chemical species would require gigatons of material, which would have to be produced and stored far in advance of the volcanic event. The cost of this undertaking would be immense. In addition to these daunting logistical challenges, a range of other uncertainties and complications associated with this concept are discussed.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18854\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18854","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

根据历史数据估计,未来100年发生灾难性火山喷发的概率约为六分之一。大型火山爆发可能导致2-4年的全球显著降温,对全球农业产生潜在的破坏性影响。原则上,可以通过故意向大气中排放具有高温室气体强度的短寿命化学物质来减少火山引起的冷却的负面影响。本文以全球化学工业为背景,考察了这一概念在大范围短期气候污染物中的物理可行性。任何已知化学物质的故意排放都需要数十亿吨的物质,这些物质必须在火山事件发生之前很久就生产和储存起来。这项工作的成本将是巨大的。除了这些令人生畏的后勤挑战外,还讨论了与该概念相关的一系列其他不确定性和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Could the chemical industry mitigate rapid global cooling from a catastrophic volcanic eruption?
Estimates based on historical data place the probability of a catastrophic volcanic eruption in the next 100 years at around one in six. Large volcanic eruptions can lead to significant global cooling for 2–4 years, with potentially devastating impacts on global agriculture. In principle, the negative impacts of volcano-induced cooling could be reduced by deliberate emission of short-lived chemicals with high greenhouse gas intensity into the atmosphere. This article examines the physical feasibility of this concept for a wide range of short-lived climate pollutants, using the global chemical industry for context. Deliberate emission of any known chemical species would require gigatons of material, which would have to be produced and stored far in advance of the volcanic event. The cost of this undertaking would be immense. In addition to these daunting logistical challenges, a range of other uncertainties and complications associated with this concept are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信