热塑性聚氨酯中与冷却速率相关的多态性:硬段含量的影响

IF 4.5 2区 化学 Q2 POLYMER SCIENCE
Zakarya Baouch , Katalee Jariyavidyanont , Lisa Moni , Leire Sangroniz , Elmar Pöselt , Alejandro Müller , René Androsch , Dario Cavallo
{"title":"热塑性聚氨酯中与冷却速率相关的多态性:硬段含量的影响","authors":"Zakarya Baouch ,&nbsp;Katalee Jariyavidyanont ,&nbsp;Lisa Moni ,&nbsp;Leire Sangroniz ,&nbsp;Elmar Pöselt ,&nbsp;Alejandro Müller ,&nbsp;René Androsch ,&nbsp;Dario Cavallo","doi":"10.1016/j.polymer.2025.128477","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoplastic polyurethanes (TPUs) are multi-block copolymers consisting of hard (HS) and soft segments (SS). The hard segment, based on 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol (MDI/BD), crystallizes into two forms (Form I and Form II) depending on cooling conditions. While these polymorphs exhibit distinct mechanical properties, a detailed understanding of their formation conditions is lacking. This study explores how HS content and the cooling rate of the melt influence TPU polymorphism. Using conventional and fast scanning calorimetry, along with in-situ and ex-situ structural characterization, we developed a “polymorph map” correlating cooling conditions and HS content with final structures. For HS content above 50 wt%, both polymorphs coexist at cooling rates of 10–30 K/min, with Form I dominating as the cooling rate increases. Fully amorphous TPUs form at cooling rates &gt;100–1000 K/min. At HS lower than 50 wt%, only Form I crystallizes. Pure Form II cannot form under non-isothermal conditions due to thermal degradation at rates below 1–3 K/min. Polarized light microscopy distinguishes the polymorphs: Form II displays birefringent spherulites. Quenched samples reveal a glass transition temperature linearly dependent on HS content, suggesting partial miscibility between HS and SS. These findings provide a framework for designing TPUs with tailored crystalline structures through precise control of HS content and processing conditions.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"328 ","pages":"Article 128477"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooling rate-dependent polymorphism in thermoplastic polyurethanes: effect of hard segments content\",\"authors\":\"Zakarya Baouch ,&nbsp;Katalee Jariyavidyanont ,&nbsp;Lisa Moni ,&nbsp;Leire Sangroniz ,&nbsp;Elmar Pöselt ,&nbsp;Alejandro Müller ,&nbsp;René Androsch ,&nbsp;Dario Cavallo\",\"doi\":\"10.1016/j.polymer.2025.128477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoplastic polyurethanes (TPUs) are multi-block copolymers consisting of hard (HS) and soft segments (SS). The hard segment, based on 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol (MDI/BD), crystallizes into two forms (Form I and Form II) depending on cooling conditions. While these polymorphs exhibit distinct mechanical properties, a detailed understanding of their formation conditions is lacking. This study explores how HS content and the cooling rate of the melt influence TPU polymorphism. Using conventional and fast scanning calorimetry, along with in-situ and ex-situ structural characterization, we developed a “polymorph map” correlating cooling conditions and HS content with final structures. For HS content above 50 wt%, both polymorphs coexist at cooling rates of 10–30 K/min, with Form I dominating as the cooling rate increases. Fully amorphous TPUs form at cooling rates &gt;100–1000 K/min. At HS lower than 50 wt%, only Form I crystallizes. Pure Form II cannot form under non-isothermal conditions due to thermal degradation at rates below 1–3 K/min. Polarized light microscopy distinguishes the polymorphs: Form II displays birefringent spherulites. Quenched samples reveal a glass transition temperature linearly dependent on HS content, suggesting partial miscibility between HS and SS. These findings provide a framework for designing TPUs with tailored crystalline structures through precise control of HS content and processing conditions.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"328 \",\"pages\":\"Article 128477\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003238612500463X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003238612500463X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

热塑性聚氨酯(tpu)是由硬段(HS)和软段(SS)组成的多嵌段共聚物。硬段以4,4 ' -亚甲基二苯二异氰酸酯和1,4-丁二醇(MDI/BD)为基础,根据冷却条件结晶成两种形式(形式I和形式II)。虽然这些多晶岩表现出独特的力学特性,但对它们的形成条件还缺乏详细的了解。本研究探讨了HS含量和熔体冷却速率对TPU晶型的影响。使用常规和快速扫描量热法,以及原位和非原位结构表征,我们开发了一个“多晶图”,将冷却条件和HS含量与最终结构联系起来。当HS含量大于50 wt%时,在10 ~ 30 K/min的冷却速率下,两种晶型并存,随着冷却速率的增加,晶型I占主导地位。在100-1000 K/min的冷却速率下形成完全无定形tpu。在HS低于50 wt%时,只有Form I结晶。纯形式II不能在非等温条件下形成,因为热降解速率低于1-3 K/min。偏振光显微镜可以区分多晶型:形式II显示双折射球晶。淬火样品的玻璃化转变温度与HS含量呈线性关系,表明HS和SS之间存在部分混相。这些发现为通过精确控制HS含量和加工条件来设计具有定制晶体结构的tpu提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cooling rate-dependent polymorphism in thermoplastic polyurethanes: effect of hard segments content

Cooling rate-dependent polymorphism in thermoplastic polyurethanes: effect of hard segments content

Cooling rate-dependent polymorphism in thermoplastic polyurethanes: effect of hard segments content
Thermoplastic polyurethanes (TPUs) are multi-block copolymers consisting of hard (HS) and soft segments (SS). The hard segment, based on 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol (MDI/BD), crystallizes into two forms (Form I and Form II) depending on cooling conditions. While these polymorphs exhibit distinct mechanical properties, a detailed understanding of their formation conditions is lacking. This study explores how HS content and the cooling rate of the melt influence TPU polymorphism. Using conventional and fast scanning calorimetry, along with in-situ and ex-situ structural characterization, we developed a “polymorph map” correlating cooling conditions and HS content with final structures. For HS content above 50 wt%, both polymorphs coexist at cooling rates of 10–30 K/min, with Form I dominating as the cooling rate increases. Fully amorphous TPUs form at cooling rates >100–1000 K/min. At HS lower than 50 wt%, only Form I crystallizes. Pure Form II cannot form under non-isothermal conditions due to thermal degradation at rates below 1–3 K/min. Polarized light microscopy distinguishes the polymorphs: Form II displays birefringent spherulites. Quenched samples reveal a glass transition temperature linearly dependent on HS content, suggesting partial miscibility between HS and SS. These findings provide a framework for designing TPUs with tailored crystalline structures through precise control of HS content and processing conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信