辐照赤铁矿表面碳层电子注入高效太阳水氧化的原位观察

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ye Zhu, Cheng Lu, Yong Feng, Jiabin Xu, Shuo Li, Bai Xu, Haifeng Zhao, Kun Feng, Jun Zhong
{"title":"辐照赤铁矿表面碳层电子注入高效太阳水氧化的原位观察","authors":"Ye Zhu, Cheng Lu, Yong Feng, Jiabin Xu, Shuo Li, Bai Xu, Haifeng Zhao, Kun Feng, Jun Zhong","doi":"10.1016/j.jmst.2025.03.054","DOIUrl":null,"url":null,"abstract":"In-situ observation of the charge transfer plays a key role in understanding the working mechanism of hematite for solar water oxidation. Here by using in-situ X-ray absorption spectroscopy (XAS), the electron injection from illuminated hematite (photon-excited electron) to the surface carbon layer can be clearly identified, which can facilitate the charge separation and then improve the performance. As a result, the carbon-coated and Sn-doped hematite photoanode (C-Sn-Fe<sub>2</sub>O<sub>3</sub>) shows a greatly enhanced photocurrent density of 2.3 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub>, which is 2.3 times that of the pristine hematite. The injected electron can modify the chemical state of surface groups in the carbon layer and be quickly transferred to the electrode due to the high conductivity of the carbon layer, leaving behind the high-valence Fe<sup>4+</sup> with high oxidation capability to enhance the performance. By coupling with the FeNiOOH co-catalyst, the photoanode can finally achieve a high photocurrent density of 3.0 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub> with a low onset potential of 0.76 V<sub>RHE</sub>. The understanding of the charge migration route by using in-situ XAS offers a novel way for the design of highly efficient solar water oxidation materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"10 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ observation of electron injection to surface carbon layer from illuminated hematite for efficient solar water oxidation\",\"authors\":\"Ye Zhu, Cheng Lu, Yong Feng, Jiabin Xu, Shuo Li, Bai Xu, Haifeng Zhao, Kun Feng, Jun Zhong\",\"doi\":\"10.1016/j.jmst.2025.03.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ observation of the charge transfer plays a key role in understanding the working mechanism of hematite for solar water oxidation. Here by using in-situ X-ray absorption spectroscopy (XAS), the electron injection from illuminated hematite (photon-excited electron) to the surface carbon layer can be clearly identified, which can facilitate the charge separation and then improve the performance. As a result, the carbon-coated and Sn-doped hematite photoanode (C-Sn-Fe<sub>2</sub>O<sub>3</sub>) shows a greatly enhanced photocurrent density of 2.3 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub>, which is 2.3 times that of the pristine hematite. The injected electron can modify the chemical state of surface groups in the carbon layer and be quickly transferred to the electrode due to the high conductivity of the carbon layer, leaving behind the high-valence Fe<sup>4+</sup> with high oxidation capability to enhance the performance. By coupling with the FeNiOOH co-catalyst, the photoanode can finally achieve a high photocurrent density of 3.0 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub> with a low onset potential of 0.76 V<sub>RHE</sub>. The understanding of the charge migration route by using in-situ XAS offers a novel way for the design of highly efficient solar water oxidation materials.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.03.054\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.03.054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原位观察赤铁矿的电荷传递对了解赤铁矿太阳水氧化机理具有重要意义。本文利用原位x射线吸收光谱(XAS),可以清晰地识别赤铁矿照射后的电子(光子激发电子)向表面碳层的注入,从而促进电荷分离,进而提高性能。结果表明,碳包覆掺杂锡赤铁矿光阳极(C-Sn-Fe2O3)在1.23 VRHE下光电流密度显著提高,达到2.3 mA/cm2,是原始赤铁矿的2.3倍。注入的电子可以修饰碳层表面基团的化学状态,并由于碳层的高导电性迅速转移到电极上,留下具有高氧化能力的高价Fe4+,从而增强性能。通过与FeNiOOH共催化剂的耦合,光阳极最终可以在1.23 VRHE下获得3.0 mA/cm2的高光电流密度,而起始电位仅为0.76 VRHE。利用原位XAS技术了解电荷迁移路线,为高效太阳能水氧化材料的设计提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-situ observation of electron injection to surface carbon layer from illuminated hematite for efficient solar water oxidation

In-situ observation of electron injection to surface carbon layer from illuminated hematite for efficient solar water oxidation
In-situ observation of the charge transfer plays a key role in understanding the working mechanism of hematite for solar water oxidation. Here by using in-situ X-ray absorption spectroscopy (XAS), the electron injection from illuminated hematite (photon-excited electron) to the surface carbon layer can be clearly identified, which can facilitate the charge separation and then improve the performance. As a result, the carbon-coated and Sn-doped hematite photoanode (C-Sn-Fe2O3) shows a greatly enhanced photocurrent density of 2.3 mA/cm2 at 1.23 VRHE, which is 2.3 times that of the pristine hematite. The injected electron can modify the chemical state of surface groups in the carbon layer and be quickly transferred to the electrode due to the high conductivity of the carbon layer, leaving behind the high-valence Fe4+ with high oxidation capability to enhance the performance. By coupling with the FeNiOOH co-catalyst, the photoanode can finally achieve a high photocurrent density of 3.0 mA/cm2 at 1.23 VRHE with a low onset potential of 0.76 VRHE. The understanding of the charge migration route by using in-situ XAS offers a novel way for the design of highly efficient solar water oxidation materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信