Hyun Woo Kim, Jiwon Kim, Jong Youl Kim, Kyubeen Kim, Ju Young Lee, Taemin Kim, Shinil Cho, Jong Bin An, Hyun Jae Kim, Lulu Sun, Sunghoon Lee, Kenjiro Fukuda, Takao Someya, Mingyu Sang, Young Uk Cho, Jong Eun Lee, Ki Jun Yu
{"title":"透明,无金属PEDOT:PSS神经接口,用于同时记录低噪声电生理和无伪影双光子成像","authors":"Hyun Woo Kim, Jiwon Kim, Jong Youl Kim, Kyubeen Kim, Ju Young Lee, Taemin Kim, Shinil Cho, Jong Bin An, Hyun Jae Kim, Lulu Sun, Sunghoon Lee, Kenjiro Fukuda, Takao Someya, Mingyu Sang, Young Uk Cho, Jong Eun Lee, Ki Jun Yu","doi":"10.1038/s41467-025-59303-2","DOIUrl":null,"url":null,"abstract":"<p>Simultaneous two-photon imaging and electrophysiological recordings offer considerable potential for advancing neurological research and therapies. However, traditional metal-based neural interfaces suffer from photoelectric artifacts, while existing transparent implants rely on opaque interconnect lines to address conductivity limitations. Herein, we developed an optically transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) neural electrode array with transparent electrodes and interconnect lines. Through a formamide, phosphoric acid, and ethylene glycol treatment, the metal-free PEDOT:PSS array achieved an impedance of 45.8 kΩ (at 1 kHz) even with a 20 × 20 µm² size. This advanced performance surpasses previous metal-free transparent neural interfaces and facilitates precise electrophysiological recordings, including extracellular action potentials and low-noise local field potentials. In vivo experiments demonstrated artifact-free two-photon imaging and reliable neural signal acquisition, while biocompatibility tests confirmed negligible cytotoxicity or immune responses. The developed metal-free PEDOT:PSS array provides a robust platform for neural recording and bioimaging, representing an advancement in transparent neural interface technology and integrated optical modalities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"88 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent, metal-free PEDOT:PSS neural interfaces for simultaneous recording of low-noise electrophysiology and artifact-free two-photon imaging\",\"authors\":\"Hyun Woo Kim, Jiwon Kim, Jong Youl Kim, Kyubeen Kim, Ju Young Lee, Taemin Kim, Shinil Cho, Jong Bin An, Hyun Jae Kim, Lulu Sun, Sunghoon Lee, Kenjiro Fukuda, Takao Someya, Mingyu Sang, Young Uk Cho, Jong Eun Lee, Ki Jun Yu\",\"doi\":\"10.1038/s41467-025-59303-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simultaneous two-photon imaging and electrophysiological recordings offer considerable potential for advancing neurological research and therapies. However, traditional metal-based neural interfaces suffer from photoelectric artifacts, while existing transparent implants rely on opaque interconnect lines to address conductivity limitations. Herein, we developed an optically transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) neural electrode array with transparent electrodes and interconnect lines. Through a formamide, phosphoric acid, and ethylene glycol treatment, the metal-free PEDOT:PSS array achieved an impedance of 45.8 kΩ (at 1 kHz) even with a 20 × 20 µm² size. This advanced performance surpasses previous metal-free transparent neural interfaces and facilitates precise electrophysiological recordings, including extracellular action potentials and low-noise local field potentials. In vivo experiments demonstrated artifact-free two-photon imaging and reliable neural signal acquisition, while biocompatibility tests confirmed negligible cytotoxicity or immune responses. The developed metal-free PEDOT:PSS array provides a robust platform for neural recording and bioimaging, representing an advancement in transparent neural interface technology and integrated optical modalities.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59303-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59303-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Transparent, metal-free PEDOT:PSS neural interfaces for simultaneous recording of low-noise electrophysiology and artifact-free two-photon imaging
Simultaneous two-photon imaging and electrophysiological recordings offer considerable potential for advancing neurological research and therapies. However, traditional metal-based neural interfaces suffer from photoelectric artifacts, while existing transparent implants rely on opaque interconnect lines to address conductivity limitations. Herein, we developed an optically transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) neural electrode array with transparent electrodes and interconnect lines. Through a formamide, phosphoric acid, and ethylene glycol treatment, the metal-free PEDOT:PSS array achieved an impedance of 45.8 kΩ (at 1 kHz) even with a 20 × 20 µm² size. This advanced performance surpasses previous metal-free transparent neural interfaces and facilitates precise electrophysiological recordings, including extracellular action potentials and low-noise local field potentials. In vivo experiments demonstrated artifact-free two-photon imaging and reliable neural signal acquisition, while biocompatibility tests confirmed negligible cytotoxicity or immune responses. The developed metal-free PEDOT:PSS array provides a robust platform for neural recording and bioimaging, representing an advancement in transparent neural interface technology and integrated optical modalities.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.