始新世早期暖化过程中更强、更持久的El Niño-Southern振荡

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
S. Abhik, Dietmar Dommenget, Shayne McGregor, David K. Hutchinson, Sebastian Steinig, Jiang Zhu, Fabio A. Capitanio, Daniel J. Lunt, Igor Niezgodzki, Gregor Knorr, Wing-Le Chan, Ayako Abe-Ouchi
{"title":"始新世早期暖化过程中更强、更持久的El Niño-Southern振荡","authors":"S. Abhik, Dietmar Dommenget, Shayne McGregor, David K. Hutchinson, Sebastian Steinig, Jiang Zhu, Fabio A. Capitanio, Daniel J. Lunt, Igor Niezgodzki, Gregor Knorr, Wing-Le Chan, Ayako Abe-Ouchi","doi":"10.1038/s41467-025-59263-7","DOIUrl":null,"url":null,"abstract":"<p>The El Niño Southern Oscillation (ENSO) during the Early Eocene Climatic Optimum (EECO, 56–48 million years ago) is investigated using a multi-model ensemble of deep-time climate simulations. We reveal that ENSO sea surface temperature variability during the EECO had significantly longer periodicity and stronger amplitude than present-day conditions. These changes are attributed to intensified ocean-atmosphere feedback processes and enhanced in-phase tropical inter-basin interactions within a broader ocean basin compared to the present-day. Sensitivity experiments in coupled ocean-atmosphere models suggest that tectonic changes, particularly the expansion of the tropical ocean basin, play a dominant role in amplifying ENSO variability and extending its periodicity, while stronger inter-basin connections further enhance ENSO amplitude. Elevated atmospheric CO<sub>2</sub> levels, though driving substantial mean-state changes, partially offset the tectonic influence on ENSO variability by modifying feedback processes. These findings underscore the role of tropical ocean basin geometry and atmospheric CO<sub>2</sub> levels in shaping ENSO variability, offering insights into past climate dynamics and implications for future projections under sustained global warming.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"41 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stronger and prolonged El Niño-Southern Oscillation in the Early Eocene warmth\",\"authors\":\"S. Abhik, Dietmar Dommenget, Shayne McGregor, David K. Hutchinson, Sebastian Steinig, Jiang Zhu, Fabio A. Capitanio, Daniel J. Lunt, Igor Niezgodzki, Gregor Knorr, Wing-Le Chan, Ayako Abe-Ouchi\",\"doi\":\"10.1038/s41467-025-59263-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The El Niño Southern Oscillation (ENSO) during the Early Eocene Climatic Optimum (EECO, 56–48 million years ago) is investigated using a multi-model ensemble of deep-time climate simulations. We reveal that ENSO sea surface temperature variability during the EECO had significantly longer periodicity and stronger amplitude than present-day conditions. These changes are attributed to intensified ocean-atmosphere feedback processes and enhanced in-phase tropical inter-basin interactions within a broader ocean basin compared to the present-day. Sensitivity experiments in coupled ocean-atmosphere models suggest that tectonic changes, particularly the expansion of the tropical ocean basin, play a dominant role in amplifying ENSO variability and extending its periodicity, while stronger inter-basin connections further enhance ENSO amplitude. Elevated atmospheric CO<sub>2</sub> levels, though driving substantial mean-state changes, partially offset the tectonic influence on ENSO variability by modifying feedback processes. These findings underscore the role of tropical ocean basin geometry and atmospheric CO<sub>2</sub> levels in shaping ENSO variability, offering insights into past climate dynamics and implications for future projections under sustained global warming.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59263-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59263-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用多模式深时气候模拟研究了早始新世气候最适期(EECO, 5600 - 4800万年前)El Niño南方涛动(ENSO)。结果表明,ENSO在EECO期间的海温变化周期明显长于现今,幅度明显大于现今。与现在相比,这些变化归因于海洋-大气反馈过程的加强以及在更广泛的海洋盆地内热带盆地间的同相相互作用的增强。海洋-大气耦合模式的敏感性实验表明,构造变化,特别是热带海洋盆地的扩张,在放大ENSO变率和延长其周期性方面起主导作用,而更强的盆间联系进一步增强了ENSO振幅。大气CO2水平升高虽然驱动了大量的平均状态变化,但通过改变反馈过程部分抵消了构造对ENSO变率的影响。这些发现强调了热带海洋盆地的几何形状和大气二氧化碳水平在塑造ENSO变率中的作用,提供了对过去气候动态的见解,并对持续全球变暖下的未来预测产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stronger and prolonged El Niño-Southern Oscillation in the Early Eocene warmth

Stronger and prolonged El Niño-Southern Oscillation in the Early Eocene warmth

The El Niño Southern Oscillation (ENSO) during the Early Eocene Climatic Optimum (EECO, 56–48 million years ago) is investigated using a multi-model ensemble of deep-time climate simulations. We reveal that ENSO sea surface temperature variability during the EECO had significantly longer periodicity and stronger amplitude than present-day conditions. These changes are attributed to intensified ocean-atmosphere feedback processes and enhanced in-phase tropical inter-basin interactions within a broader ocean basin compared to the present-day. Sensitivity experiments in coupled ocean-atmosphere models suggest that tectonic changes, particularly the expansion of the tropical ocean basin, play a dominant role in amplifying ENSO variability and extending its periodicity, while stronger inter-basin connections further enhance ENSO amplitude. Elevated atmospheric CO2 levels, though driving substantial mean-state changes, partially offset the tectonic influence on ENSO variability by modifying feedback processes. These findings underscore the role of tropical ocean basin geometry and atmospheric CO2 levels in shaping ENSO variability, offering insights into past climate dynamics and implications for future projections under sustained global warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信