基于近红外光的机器人应用非接触传感系统

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ran Wang, Yu Cheng, Qiran Zhang, Haoran Li, Yangyang Wang, Jiaqi Liu, Ruirui Xing, Jinming Ma, Tifeng Jiao
{"title":"基于近红外光的机器人应用非接触传感系统","authors":"Ran Wang, Yu Cheng, Qiran Zhang, Haoran Li, Yangyang Wang, Jiaqi Liu, Ruirui Xing, Jinming Ma, Tifeng Jiao","doi":"10.1002/adma.202414481","DOIUrl":null,"url":null,"abstract":"With the development of artificial intelligence and the Internet of Things, non-contact sensors are expected to realize complex human-computer interaction. However, current non-contact sensors are mainly limited by accuracy and stability. Herein, an intelligent infrared photothermal non-contact sensing system is developed that provides long-distance and high-accuracy non-contact sensing. A black phosphorus (BP)-based composite organogel is designed, which exhibits excellent photothermal properties and environmental stability, as the active material. This material can detect patterns created by near-infrared (NIR) light through various patterned masks monitored by an infrared thermal imager. The constructed non-contact sensing system is capable of accurately recognizing 26 letters with an impressive accuracy rate of 99.4%. Furthermore, even small size non-contact sensors can maintain high sensitivity and stability across a wide temperature range, at long working distances, and under different current intensities and dark conditions, demonstrating exceptional robustness. Combined with machine learning method, it is demonstrated that the non-contact sensing system excels in pattern recognition and human-computer interaction. These features highlight its potential applications in intelligent robotics and remote control systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"10 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near Infrared Light-Based Non-Contact Sensing System for Robotics Applications\",\"authors\":\"Ran Wang, Yu Cheng, Qiran Zhang, Haoran Li, Yangyang Wang, Jiaqi Liu, Ruirui Xing, Jinming Ma, Tifeng Jiao\",\"doi\":\"10.1002/adma.202414481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of artificial intelligence and the Internet of Things, non-contact sensors are expected to realize complex human-computer interaction. However, current non-contact sensors are mainly limited by accuracy and stability. Herein, an intelligent infrared photothermal non-contact sensing system is developed that provides long-distance and high-accuracy non-contact sensing. A black phosphorus (BP)-based composite organogel is designed, which exhibits excellent photothermal properties and environmental stability, as the active material. This material can detect patterns created by near-infrared (NIR) light through various patterned masks monitored by an infrared thermal imager. The constructed non-contact sensing system is capable of accurately recognizing 26 letters with an impressive accuracy rate of 99.4%. Furthermore, even small size non-contact sensors can maintain high sensitivity and stability across a wide temperature range, at long working distances, and under different current intensities and dark conditions, demonstrating exceptional robustness. Combined with machine learning method, it is demonstrated that the non-contact sensing system excels in pattern recognition and human-computer interaction. These features highlight its potential applications in intelligent robotics and remote control systems.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414481\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414481","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能和物联网的发展,非接触式传感器有望实现复杂的人机交互。然而,目前的非接触式传感器主要受精度和稳定性的限制。为此,研制了一种智能红外光热非接触传感系统,实现了远距离、高精度的非接触传感。设计了一种具有良好光热性能和环境稳定性的黑磷基复合有机凝胶作为活性材料。这种材料可以通过红外热成像仪监测的各种图案掩模检测近红外(NIR)光产生的图案。所构建的非接触式传感系统能够准确识别26个字母,准确率高达99.4%。此外,即使是小尺寸的非接触式传感器也可以在宽温度范围、长工作距离、不同电流强度和黑暗条件下保持高灵敏度和稳定性,表现出卓越的稳健性。结合机器学习方法,证明了非接触式传感系统在模式识别和人机交互方面的优势。这些特点突出了其在智能机器人和远程控制系统中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Near Infrared Light-Based Non-Contact Sensing System for Robotics Applications

Near Infrared Light-Based Non-Contact Sensing System for Robotics Applications
With the development of artificial intelligence and the Internet of Things, non-contact sensors are expected to realize complex human-computer interaction. However, current non-contact sensors are mainly limited by accuracy and stability. Herein, an intelligent infrared photothermal non-contact sensing system is developed that provides long-distance and high-accuracy non-contact sensing. A black phosphorus (BP)-based composite organogel is designed, which exhibits excellent photothermal properties and environmental stability, as the active material. This material can detect patterns created by near-infrared (NIR) light through various patterned masks monitored by an infrared thermal imager. The constructed non-contact sensing system is capable of accurately recognizing 26 letters with an impressive accuracy rate of 99.4%. Furthermore, even small size non-contact sensors can maintain high sensitivity and stability across a wide temperature range, at long working distances, and under different current intensities and dark conditions, demonstrating exceptional robustness. Combined with machine learning method, it is demonstrated that the non-contact sensing system excels in pattern recognition and human-computer interaction. These features highlight its potential applications in intelligent robotics and remote control systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信