Xunlu Wang, Jiacheng (Jayden) Wang, Huashuai Hu, Congling Yin, Lo-Yueh Chang, Ye Zhu, Jiacheng Wang, Minghui Yang
{"title":"利用金属氮化物中的自旋-晶格相互作用进行高效氨电合成","authors":"Xunlu Wang, Jiacheng (Jayden) Wang, Huashuai Hu, Congling Yin, Lo-Yueh Chang, Ye Zhu, Jiacheng Wang, Minghui Yang","doi":"10.1002/adma.202504505","DOIUrl":null,"url":null,"abstract":"Metal nitrides, renowned for their spin-lattice-charge interplay, offer vast potential in catalysis, electronics, and energy conversion. However, spin polarization manipulation in these nitrides remains a challenge for multi-electron electrocatalytic processes. This study introduces Co<sub>3</sub>Mo<sub>3</sub>N with a low-spin polarization configuration, achieved by incorporating spin-free lattice Mo with 4<i>d</i> orbitals into high-spin polarization Co<sub>4</sub>N. This innovation delivers outstanding nitrate-to-ammonia electrosynthesis, ranking among the best to date. Mo inclusion induces competing magnetic exchange interactions, reducing the spin polarization degree and enabling rate-determining step of NO<sub>2</sub>* to NO-OH* conversion via vertex-sharing NMo<sub>6</sub> octahedra. A paired electro-refinery with a Co<sub>3</sub>Mo<sub>3</sub>N cathode achieves 2 000 mA cm<sup>−2</sup> at 2.28 V and sustains an industrial-scale current of 1 000 mA cm<sup>−2</sup> for 2,100 h, with an NH<sub>3</sub> production rate of ≈70 mg NH<sub>3</sub> h<sup>−1</sup> cm<sup>−2</sup>. This work establishes a transformative platform for spin polarization degree-engineered electrocatalysts, driving breakthroughs in energy conversion technologies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"41 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Spin-Lattice Interplay in Metal Nitrides for Efficient Ammonia Electrosynthesis\",\"authors\":\"Xunlu Wang, Jiacheng (Jayden) Wang, Huashuai Hu, Congling Yin, Lo-Yueh Chang, Ye Zhu, Jiacheng Wang, Minghui Yang\",\"doi\":\"10.1002/adma.202504505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal nitrides, renowned for their spin-lattice-charge interplay, offer vast potential in catalysis, electronics, and energy conversion. However, spin polarization manipulation in these nitrides remains a challenge for multi-electron electrocatalytic processes. This study introduces Co<sub>3</sub>Mo<sub>3</sub>N with a low-spin polarization configuration, achieved by incorporating spin-free lattice Mo with 4<i>d</i> orbitals into high-spin polarization Co<sub>4</sub>N. This innovation delivers outstanding nitrate-to-ammonia electrosynthesis, ranking among the best to date. Mo inclusion induces competing magnetic exchange interactions, reducing the spin polarization degree and enabling rate-determining step of NO<sub>2</sub>* to NO-OH* conversion via vertex-sharing NMo<sub>6</sub> octahedra. A paired electro-refinery with a Co<sub>3</sub>Mo<sub>3</sub>N cathode achieves 2 000 mA cm<sup>−2</sup> at 2.28 V and sustains an industrial-scale current of 1 000 mA cm<sup>−2</sup> for 2,100 h, with an NH<sub>3</sub> production rate of ≈70 mg NH<sub>3</sub> h<sup>−1</sup> cm<sup>−2</sup>. This work establishes a transformative platform for spin polarization degree-engineered electrocatalysts, driving breakthroughs in energy conversion technologies.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202504505\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
金属氮化物以其自旋-晶格-电荷相互作用而闻名,在催化、电子和能量转换方面具有巨大的潜力。然而,这些氮化物的自旋极化操作仍然是多电子电催化过程的一个挑战。本研究引入了具有低自旋极化构型的Co3Mo3N,该构型是通过将具有4d轨道的无自旋晶格Mo加入到高自旋极化的Co4N中实现的。这一创新提供了出色的硝酸盐到氨的电合成,是迄今为止最好的。Mo包合物诱导竞争性磁交换相互作用,降低了自旋极化度,实现了NO2*通过共享顶点的NMo6八面体向NO-OH*转化的速率决定步骤。Co3Mo3N阴极的配对电精炼厂在2.28 V电压下可达到2 000 mA cm - 2,并维持工业规模的1 000 mA cm - 2电流2,100 h, NH3的产率≈70 mg NH3 h - 1 cm - 2。这项工作为自旋极化度工程电催化剂建立了一个变革性的平台,推动了能量转换技术的突破。
Harnessing Spin-Lattice Interplay in Metal Nitrides for Efficient Ammonia Electrosynthesis
Metal nitrides, renowned for their spin-lattice-charge interplay, offer vast potential in catalysis, electronics, and energy conversion. However, spin polarization manipulation in these nitrides remains a challenge for multi-electron electrocatalytic processes. This study introduces Co3Mo3N with a low-spin polarization configuration, achieved by incorporating spin-free lattice Mo with 4d orbitals into high-spin polarization Co4N. This innovation delivers outstanding nitrate-to-ammonia electrosynthesis, ranking among the best to date. Mo inclusion induces competing magnetic exchange interactions, reducing the spin polarization degree and enabling rate-determining step of NO2* to NO-OH* conversion via vertex-sharing NMo6 octahedra. A paired electro-refinery with a Co3Mo3N cathode achieves 2 000 mA cm−2 at 2.28 V and sustains an industrial-scale current of 1 000 mA cm−2 for 2,100 h, with an NH3 production rate of ≈70 mg NH3 h−1 cm−2. This work establishes a transformative platform for spin polarization degree-engineered electrocatalysts, driving breakthroughs in energy conversion technologies.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.