{"title":"利用吸塑型动态释放聚合物实现全彩色微型led的高产量和高精度传质","authors":"Xinrui Huang, Qian Liu, Jinkun Jiang, Xuehuang Tang, Xin Lin, Yujie Xie, Taifu Lang, Zhonghang Huang, Qun Yan, Chang Lin, Jie Sun","doi":"10.1021/acsami.5c01531","DOIUrl":null,"url":null,"abstract":"Micro light-emitting diode (Micro-LED) is widely regarded as a highly promising technology in the current display field due to its excellent performance, but the core issue hindering the further development of Micro-LED is how to achieve high-precision and high-yield transfer. In this study, laser-induced forward transfer (LIFT) is adopted as the main technique, and a novel blister-type dynamic release layer (DRL) material is selected, characterized by a gentle transfer process and minimal residue on the chip after transfer. Chip-on-wafer (COW) is a structure that fabricates a large number of Micro-LEDs (15 × 30 μm<sup>2</sup>) on a sapphire substrate. The COW-on-head (COH) chip bonding method can control the uniformity of the overall chip height before transfer within 3.5%, which is favorable for subsequent stable transfer. Based on the analysis of the close relationship between the transfer gap and laser energy density, this study successfully achieved the transfer of red/green/blue (R/G/B) Micro-LED chips (6400, respectively) onto the corresponding chip-on-carrier 2 (COC-2), and all of them have achieved a one-step transfer yield of over 99.3% and an average chip transfer offset of 2 μm or less. It is worth mentioning that the one-step transfer yield mentioned in this paper is different from the yield after testing and repairing the chips. The one-step transfer yield can fully reflect the transfer quality. In order to verify the validity of this study, a 1 in., full-color, active Micro-LED display with a pixel size of 114 pixels per inch (PPI) and a display brightness of 5598 cd/m<sup>2</sup> was successfully fabricated. This study proposes an optimized solution for Micro-LED transfer technology, which will help accelerate the mass production and marketization of Micro-LED.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"42 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Yield and High-Accuracy Mass Transfer of Full-Color Micro-LEDs Using a Blister-Type Dynamic Release Polymer\",\"authors\":\"Xinrui Huang, Qian Liu, Jinkun Jiang, Xuehuang Tang, Xin Lin, Yujie Xie, Taifu Lang, Zhonghang Huang, Qun Yan, Chang Lin, Jie Sun\",\"doi\":\"10.1021/acsami.5c01531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro light-emitting diode (Micro-LED) is widely regarded as a highly promising technology in the current display field due to its excellent performance, but the core issue hindering the further development of Micro-LED is how to achieve high-precision and high-yield transfer. In this study, laser-induced forward transfer (LIFT) is adopted as the main technique, and a novel blister-type dynamic release layer (DRL) material is selected, characterized by a gentle transfer process and minimal residue on the chip after transfer. Chip-on-wafer (COW) is a structure that fabricates a large number of Micro-LEDs (15 × 30 μm<sup>2</sup>) on a sapphire substrate. The COW-on-head (COH) chip bonding method can control the uniformity of the overall chip height before transfer within 3.5%, which is favorable for subsequent stable transfer. Based on the analysis of the close relationship between the transfer gap and laser energy density, this study successfully achieved the transfer of red/green/blue (R/G/B) Micro-LED chips (6400, respectively) onto the corresponding chip-on-carrier 2 (COC-2), and all of them have achieved a one-step transfer yield of over 99.3% and an average chip transfer offset of 2 μm or less. It is worth mentioning that the one-step transfer yield mentioned in this paper is different from the yield after testing and repairing the chips. The one-step transfer yield can fully reflect the transfer quality. In order to verify the validity of this study, a 1 in., full-color, active Micro-LED display with a pixel size of 114 pixels per inch (PPI) and a display brightness of 5598 cd/m<sup>2</sup> was successfully fabricated. This study proposes an optimized solution for Micro-LED transfer technology, which will help accelerate the mass production and marketization of Micro-LED.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01531\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01531","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Yield and High-Accuracy Mass Transfer of Full-Color Micro-LEDs Using a Blister-Type Dynamic Release Polymer
Micro light-emitting diode (Micro-LED) is widely regarded as a highly promising technology in the current display field due to its excellent performance, but the core issue hindering the further development of Micro-LED is how to achieve high-precision and high-yield transfer. In this study, laser-induced forward transfer (LIFT) is adopted as the main technique, and a novel blister-type dynamic release layer (DRL) material is selected, characterized by a gentle transfer process and minimal residue on the chip after transfer. Chip-on-wafer (COW) is a structure that fabricates a large number of Micro-LEDs (15 × 30 μm2) on a sapphire substrate. The COW-on-head (COH) chip bonding method can control the uniformity of the overall chip height before transfer within 3.5%, which is favorable for subsequent stable transfer. Based on the analysis of the close relationship between the transfer gap and laser energy density, this study successfully achieved the transfer of red/green/blue (R/G/B) Micro-LED chips (6400, respectively) onto the corresponding chip-on-carrier 2 (COC-2), and all of them have achieved a one-step transfer yield of over 99.3% and an average chip transfer offset of 2 μm or less. It is worth mentioning that the one-step transfer yield mentioned in this paper is different from the yield after testing and repairing the chips. The one-step transfer yield can fully reflect the transfer quality. In order to verify the validity of this study, a 1 in., full-color, active Micro-LED display with a pixel size of 114 pixels per inch (PPI) and a display brightness of 5598 cd/m2 was successfully fabricated. This study proposes an optimized solution for Micro-LED transfer technology, which will help accelerate the mass production and marketization of Micro-LED.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.