Na Liu,Jia-Xin Li,Dan-Yang Yuan,Yin-Na Su,Pei Zhang,Qi Wang,Xiao-Min Su,Lin Li,Haitao Li,She Chen,Xin-Jian He
{"title":"拟南芥中HDA19组蛋白去乙酰化酶复合物的基本被子植物特异性亚基。","authors":"Na Liu,Jia-Xin Li,Dan-Yang Yuan,Yin-Na Su,Pei Zhang,Qi Wang,Xiao-Min Su,Lin Li,Haitao Li,She Chen,Xin-Jian He","doi":"10.1038/s44318-025-00445-w","DOIUrl":null,"url":null,"abstract":"Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis.\",\"authors\":\"Na Liu,Jia-Xin Li,Dan-Yang Yuan,Yin-Na Su,Pei Zhang,Qi Wang,Xiao-Min Su,Lin Li,Haitao Li,She Chen,Xin-Jian He\",\"doi\":\"10.1038/s44318-025-00445-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00445-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00445-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis.
Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.