高通量n- seq筛选鉴定已知和新的恶臭假单胞菌KT2440基因参与金属耐受性

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Kevin Royet, Laura Kergoat, Stefanie Lutz, Charlotte Oriol, Nicolas Parisot, Christian Schori, Christian H. Ahrens, Agnes Rodrigue, Erwan Gueguen
{"title":"高通量n- seq筛选鉴定已知和新的恶臭假单胞菌KT2440基因参与金属耐受性","authors":"Kevin Royet,&nbsp;Laura Kergoat,&nbsp;Stefanie Lutz,&nbsp;Charlotte Oriol,&nbsp;Nicolas Parisot,&nbsp;Christian Schori,&nbsp;Christian H. Ahrens,&nbsp;Agnes Rodrigue,&nbsp;Erwan Gueguen","doi":"10.1111/1462-2920.70095","DOIUrl":null,"url":null,"abstract":"<p>Industrial and urban activities release toxic chemical waste into the environment. <i>Pseudomonas putida</i>, a soil bacterium, is known to degrade hydrocarbons and xenobiotics, and possesses numerous genes associated with heavy metal tolerance. Most studies on metal tolerance in <i>P. putida</i> focus solely on over- or underexpressed genes, potentially overlooking important genes with unchanged expression. This study employed a Tn-seq approach to identify the essential genes required for <i>P. putida</i> growth under metal stress. This method enables the identification of mutants with altered fitness in the presence of excess metals. The screen successfully identified a number of known genes implicated in metal resistance, including <i>czcA-1</i>, <i>cadA-3</i>, <i>cadR</i>, and <i>pcoA2</i>, thereby validating the approach. Further analyses using targeted mutagenesis and complementation assays revealed <i>PP_5337</i> as a putative transcriptional regulator involved in copper tolerance and the two-component system RoxSR (<i>PP_0887/PP_0888</i>) as a key determinant of cadmium tolerance. Additionally, PP_1663 and PP_5002 were identified as contributing to cadmium and cobalt tolerance, respectively. This study provides the first evidence linking these genes to metal tolerance, highlighting gaps in our understanding of metal tolerance mechanisms in <i>P. putida</i> and demonstrating the utility of Tn-seq for identifying novel tolerance determinants.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70095","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Tn-Seq Screens Identify Both Known and Novel Pseudomonas putida KT2440 Genes Involved in Metal Tolerance\",\"authors\":\"Kevin Royet,&nbsp;Laura Kergoat,&nbsp;Stefanie Lutz,&nbsp;Charlotte Oriol,&nbsp;Nicolas Parisot,&nbsp;Christian Schori,&nbsp;Christian H. Ahrens,&nbsp;Agnes Rodrigue,&nbsp;Erwan Gueguen\",\"doi\":\"10.1111/1462-2920.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Industrial and urban activities release toxic chemical waste into the environment. <i>Pseudomonas putida</i>, a soil bacterium, is known to degrade hydrocarbons and xenobiotics, and possesses numerous genes associated with heavy metal tolerance. Most studies on metal tolerance in <i>P. putida</i> focus solely on over- or underexpressed genes, potentially overlooking important genes with unchanged expression. This study employed a Tn-seq approach to identify the essential genes required for <i>P. putida</i> growth under metal stress. This method enables the identification of mutants with altered fitness in the presence of excess metals. The screen successfully identified a number of known genes implicated in metal resistance, including <i>czcA-1</i>, <i>cadA-3</i>, <i>cadR</i>, and <i>pcoA2</i>, thereby validating the approach. Further analyses using targeted mutagenesis and complementation assays revealed <i>PP_5337</i> as a putative transcriptional regulator involved in copper tolerance and the two-component system RoxSR (<i>PP_0887/PP_0888</i>) as a key determinant of cadmium tolerance. Additionally, PP_1663 and PP_5002 were identified as contributing to cadmium and cobalt tolerance, respectively. This study provides the first evidence linking these genes to metal tolerance, highlighting gaps in our understanding of metal tolerance mechanisms in <i>P. putida</i> and demonstrating the utility of Tn-seq for identifying novel tolerance determinants.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70095\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

工业和城市活动向环境释放有毒化学废物。恶臭假单胞菌是一种土壤细菌,已知可降解碳氢化合物和异种生物,并具有许多与重金属耐受性相关的基因。大多数关于恶臭杆菌金属耐受性的研究只关注过表达或过表达基因,而忽视了表达不变的重要基因。本研究采用n-seq方法鉴定金属胁迫下恶臭假单胞菌生长所需的必需基因。这种方法能够在存在过量金属的情况下识别出适应性改变的突变体。筛选成功地鉴定了一些已知的与金属抗性有关的基因,包括czcA-1、cadA-3、cadR和pcoA2,从而验证了该方法。利用靶向诱变和互补实验进一步分析发现,PP_5337可能是参与铜耐受性的转录调控因子,双组分系统RoxSR (PP_0887/PP_0888)是镉耐受性的关键决定因素。此外,PP_1663和PP_5002分别对镉和钴的耐受性有贡献。这项研究提供了将这些基因与金属耐受性联系起来的第一个证据,突出了我们对恶臭假单胞菌金属耐受性机制的理解差距,并证明了n-seq在鉴定新的耐受性决定因素方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Throughput Tn-Seq Screens Identify Both Known and Novel Pseudomonas putida KT2440 Genes Involved in Metal Tolerance

High-Throughput Tn-Seq Screens Identify Both Known and Novel Pseudomonas putida KT2440 Genes Involved in Metal Tolerance

Industrial and urban activities release toxic chemical waste into the environment. Pseudomonas putida, a soil bacterium, is known to degrade hydrocarbons and xenobiotics, and possesses numerous genes associated with heavy metal tolerance. Most studies on metal tolerance in P. putida focus solely on over- or underexpressed genes, potentially overlooking important genes with unchanged expression. This study employed a Tn-seq approach to identify the essential genes required for P. putida growth under metal stress. This method enables the identification of mutants with altered fitness in the presence of excess metals. The screen successfully identified a number of known genes implicated in metal resistance, including czcA-1, cadA-3, cadR, and pcoA2, thereby validating the approach. Further analyses using targeted mutagenesis and complementation assays revealed PP_5337 as a putative transcriptional regulator involved in copper tolerance and the two-component system RoxSR (PP_0887/PP_0888) as a key determinant of cadmium tolerance. Additionally, PP_1663 and PP_5002 were identified as contributing to cadmium and cobalt tolerance, respectively. This study provides the first evidence linking these genes to metal tolerance, highlighting gaps in our understanding of metal tolerance mechanisms in P. putida and demonstrating the utility of Tn-seq for identifying novel tolerance determinants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信