{"title":"基于博弈论的城市交通出行碳足迹优化模型","authors":"Xiaoyu Wu, Aiguo Lei, Lishuang Bian","doi":"10.1155/atr/3990405","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To address climate change and promote green and low-carbon development, this study proposes an urban travel carbon footprint optimization method for transportation structures. Considering the environmental friendliness and efficiency of travel and combining carbon incentive policies and regret mechanisms, the travel preference model is constructed using game theory. Through the comprehensive perceived benefit function and multidimensional analysis, the effective reduction of travel carbon footprint is achieved. Taking Beijing as an example, the optimized transportation structure reduces the carbon footprint of travel by 17.17% and the total carbon emissions by 13.04%. Research has shown that to achieve the optimal carbon footprint, the green travel preference weight <i>p</i><sub>1</sub> in the multiobjective optimization model needs to be no less than 0.48, which verifies that this method can effectively alleviate the problem of transportation carbon emissions. Although this study has certain limitations in dynamic traffic demand applications, it has good practical application value for travel carbon footprint optimization under static demand conditions and contributes to the sustainable development of urban transportation and the realization of the “dual carbon” goals in China.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3990405","citationCount":"0","resultStr":"{\"title\":\"An Optimization Model of Urban Transportation Travel Carbon Footprint Based on Game Theory\",\"authors\":\"Xiaoyu Wu, Aiguo Lei, Lishuang Bian\",\"doi\":\"10.1155/atr/3990405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>To address climate change and promote green and low-carbon development, this study proposes an urban travel carbon footprint optimization method for transportation structures. Considering the environmental friendliness and efficiency of travel and combining carbon incentive policies and regret mechanisms, the travel preference model is constructed using game theory. Through the comprehensive perceived benefit function and multidimensional analysis, the effective reduction of travel carbon footprint is achieved. Taking Beijing as an example, the optimized transportation structure reduces the carbon footprint of travel by 17.17% and the total carbon emissions by 13.04%. Research has shown that to achieve the optimal carbon footprint, the green travel preference weight <i>p</i><sub>1</sub> in the multiobjective optimization model needs to be no less than 0.48, which verifies that this method can effectively alleviate the problem of transportation carbon emissions. Although this study has certain limitations in dynamic traffic demand applications, it has good practical application value for travel carbon footprint optimization under static demand conditions and contributes to the sustainable development of urban transportation and the realization of the “dual carbon” goals in China.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3990405\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/atr/3990405\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/3990405","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An Optimization Model of Urban Transportation Travel Carbon Footprint Based on Game Theory
To address climate change and promote green and low-carbon development, this study proposes an urban travel carbon footprint optimization method for transportation structures. Considering the environmental friendliness and efficiency of travel and combining carbon incentive policies and regret mechanisms, the travel preference model is constructed using game theory. Through the comprehensive perceived benefit function and multidimensional analysis, the effective reduction of travel carbon footprint is achieved. Taking Beijing as an example, the optimized transportation structure reduces the carbon footprint of travel by 17.17% and the total carbon emissions by 13.04%. Research has shown that to achieve the optimal carbon footprint, the green travel preference weight p1 in the multiobjective optimization model needs to be no less than 0.48, which verifies that this method can effectively alleviate the problem of transportation carbon emissions. Although this study has certain limitations in dynamic traffic demand applications, it has good practical application value for travel carbon footprint optimization under static demand conditions and contributes to the sustainable development of urban transportation and the realization of the “dual carbon” goals in China.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.