基于博弈论的城市交通出行碳足迹优化模型

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Xiaoyu Wu, Aiguo Lei, Lishuang Bian
{"title":"基于博弈论的城市交通出行碳足迹优化模型","authors":"Xiaoyu Wu,&nbsp;Aiguo Lei,&nbsp;Lishuang Bian","doi":"10.1155/atr/3990405","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To address climate change and promote green and low-carbon development, this study proposes an urban travel carbon footprint optimization method for transportation structures. Considering the environmental friendliness and efficiency of travel and combining carbon incentive policies and regret mechanisms, the travel preference model is constructed using game theory. Through the comprehensive perceived benefit function and multidimensional analysis, the effective reduction of travel carbon footprint is achieved. Taking Beijing as an example, the optimized transportation structure reduces the carbon footprint of travel by 17.17% and the total carbon emissions by 13.04%. Research has shown that to achieve the optimal carbon footprint, the green travel preference weight <i>p</i><sub>1</sub> in the multiobjective optimization model needs to be no less than 0.48, which verifies that this method can effectively alleviate the problem of transportation carbon emissions. Although this study has certain limitations in dynamic traffic demand applications, it has good practical application value for travel carbon footprint optimization under static demand conditions and contributes to the sustainable development of urban transportation and the realization of the “dual carbon” goals in China.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3990405","citationCount":"0","resultStr":"{\"title\":\"An Optimization Model of Urban Transportation Travel Carbon Footprint Based on Game Theory\",\"authors\":\"Xiaoyu Wu,&nbsp;Aiguo Lei,&nbsp;Lishuang Bian\",\"doi\":\"10.1155/atr/3990405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>To address climate change and promote green and low-carbon development, this study proposes an urban travel carbon footprint optimization method for transportation structures. Considering the environmental friendliness and efficiency of travel and combining carbon incentive policies and regret mechanisms, the travel preference model is constructed using game theory. Through the comprehensive perceived benefit function and multidimensional analysis, the effective reduction of travel carbon footprint is achieved. Taking Beijing as an example, the optimized transportation structure reduces the carbon footprint of travel by 17.17% and the total carbon emissions by 13.04%. Research has shown that to achieve the optimal carbon footprint, the green travel preference weight <i>p</i><sub>1</sub> in the multiobjective optimization model needs to be no less than 0.48, which verifies that this method can effectively alleviate the problem of transportation carbon emissions. Although this study has certain limitations in dynamic traffic demand applications, it has good practical application value for travel carbon footprint optimization under static demand conditions and contributes to the sustainable development of urban transportation and the realization of the “dual carbon” goals in China.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3990405\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/atr/3990405\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/3990405","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

为应对气候变化,促进绿色低碳发展,本研究提出了一种基于交通结构的城市出行碳足迹优化方法。考虑出行的环境友好性和效率性,结合碳激励政策和后悔机制,运用博弈论构建出行偏好模型。通过综合感知效益函数和多维度分析,实现出行碳足迹的有效减少。以北京市为例,优化后的交通结构使出行碳足迹减少了17.17%,总碳排放量减少了13.04%。研究表明,要实现最优碳足迹,多目标优化模型中的绿色出行偏好权重p1需要不小于0.48,验证了该方法可以有效缓解交通碳排放问题。虽然本研究在动态交通需求应用中存在一定的局限性,但对于静态需求条件下的出行碳足迹优化具有良好的实际应用价值,有助于中国城市交通的可持续发展和“双碳”目标的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Optimization Model of Urban Transportation Travel Carbon Footprint Based on Game Theory

An Optimization Model of Urban Transportation Travel Carbon Footprint Based on Game Theory

To address climate change and promote green and low-carbon development, this study proposes an urban travel carbon footprint optimization method for transportation structures. Considering the environmental friendliness and efficiency of travel and combining carbon incentive policies and regret mechanisms, the travel preference model is constructed using game theory. Through the comprehensive perceived benefit function and multidimensional analysis, the effective reduction of travel carbon footprint is achieved. Taking Beijing as an example, the optimized transportation structure reduces the carbon footprint of travel by 17.17% and the total carbon emissions by 13.04%. Research has shown that to achieve the optimal carbon footprint, the green travel preference weight p1 in the multiobjective optimization model needs to be no less than 0.48, which verifies that this method can effectively alleviate the problem of transportation carbon emissions. Although this study has certain limitations in dynamic traffic demand applications, it has good practical application value for travel carbon footprint optimization under static demand conditions and contributes to the sustainable development of urban transportation and the realization of the “dual carbon” goals in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信