提高船舶金属氢化物储氢性能的研究进展

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Chaohe Chen, Yingkai Dong, Mengjie Jiang, Lianbin Zhang
{"title":"提高船舶金属氢化物储氢性能的研究进展","authors":"Chaohe Chen,&nbsp;Yingkai Dong,&nbsp;Mengjie Jiang,&nbsp;Lianbin Zhang","doi":"10.1155/er/8001396","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Some metals and metal alloys can store gaseous hydrogen (GH<sub>2</sub>), making the storage of hydrogen in metal hydrides (MHs) possible. The present work aims to explore the development of marine MHs and technologies for enhancing hydrogen storage performance while identifying future research priorities. First, the mechanism of MHs hydrogen storage is summarized and its applications in the maritime field are introduced. Subsequently, the technical and economic feasibility of utilizing MHs hydrogen storage technology in ships is analyzed along with the application scenarios and requirements of ship-based MHs. Furthermore, to meet the target requirements for hydrogen storage properties in ship power systems, this review focuses on several aspects: the hydrogen storage materials, reactor structural parameters, hydrogen storage operating conditions, and thermal management optimization. The factors influencing the performance of MHs hydrogen storage systems and their impacts are summarized. Strategies to enhance the performance of MHs hydrogen storage are proposed and technologies for heat transfer enhancement in MHs hydrogen storage, along with the corresponding thermal management systems, are introduced. Finally, future research directions for ship-based MHs hydrogen storage are outlined: developing new synthesis routes for novel MH hydrogen storage materials; creating microchannel hydrogen storage reactors with excellent hydrogen storage and heat transfer performance and conducting combined optimization analyses of multiple reactor structural parameters and operational parameters; coupling phase change materials (PCMs) to enhance the energy utilization efficiency of the hydrogen absorption and desorption process; reasonably regulating the kinetics of the hydrogen storage system to ensure the dynamic stability coupled with hydrogen fuel cells; and constructing intelligent hydrogen storage systems based on deep learning methods to improve the predictive and decision-making capabilities for hydrogen storage performance and thermal management. Through exploring these research directions, MHs hydrogen storage technology is anticipated to achieve greater efficiency and wider applications in the future.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8001396","citationCount":"0","resultStr":"{\"title\":\"Enhancing Hydrogen Storage Performance of Metal Hydrides in Ships: A Review\",\"authors\":\"Chaohe Chen,&nbsp;Yingkai Dong,&nbsp;Mengjie Jiang,&nbsp;Lianbin Zhang\",\"doi\":\"10.1155/er/8001396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Some metals and metal alloys can store gaseous hydrogen (GH<sub>2</sub>), making the storage of hydrogen in metal hydrides (MHs) possible. The present work aims to explore the development of marine MHs and technologies for enhancing hydrogen storage performance while identifying future research priorities. First, the mechanism of MHs hydrogen storage is summarized and its applications in the maritime field are introduced. Subsequently, the technical and economic feasibility of utilizing MHs hydrogen storage technology in ships is analyzed along with the application scenarios and requirements of ship-based MHs. Furthermore, to meet the target requirements for hydrogen storage properties in ship power systems, this review focuses on several aspects: the hydrogen storage materials, reactor structural parameters, hydrogen storage operating conditions, and thermal management optimization. The factors influencing the performance of MHs hydrogen storage systems and their impacts are summarized. Strategies to enhance the performance of MHs hydrogen storage are proposed and technologies for heat transfer enhancement in MHs hydrogen storage, along with the corresponding thermal management systems, are introduced. Finally, future research directions for ship-based MHs hydrogen storage are outlined: developing new synthesis routes for novel MH hydrogen storage materials; creating microchannel hydrogen storage reactors with excellent hydrogen storage and heat transfer performance and conducting combined optimization analyses of multiple reactor structural parameters and operational parameters; coupling phase change materials (PCMs) to enhance the energy utilization efficiency of the hydrogen absorption and desorption process; reasonably regulating the kinetics of the hydrogen storage system to ensure the dynamic stability coupled with hydrogen fuel cells; and constructing intelligent hydrogen storage systems based on deep learning methods to improve the predictive and decision-making capabilities for hydrogen storage performance and thermal management. Through exploring these research directions, MHs hydrogen storage technology is anticipated to achieve greater efficiency and wider applications in the future.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8001396\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/8001396\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/8001396","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

一些金属和金属合金可以储存气态氢(GH2),使氢储存在金属氢化物(mh)中成为可能。目前的工作旨在探索海洋mh的发展和提高储氢性能的技术,同时确定未来的研究重点。首先,综述了氢氧化氢的储氢机理,介绍了氢氧化氢在海事领域的应用。随后,结合船载mh的应用场景和需求,分析了在船舶上利用mh储氢技术的技术经济可行性。此外,为了满足船舶动力系统对储氢性能的目标要求,本文从储氢材料、反应堆结构参数、储氢工况和热管理优化等方面进行了综述。综述了影响氢能储氢系统性能的因素及其影响。提出了提高氢能储氢性能的策略,并介绍了氢能储氢强化传热技术以及相应的热管理系统。最后,展望了未来船载氢能储氢的研究方向:开发新型氢能储氢材料的合成路线;研制具有优异储氢换热性能的微通道储氢反应器,并对多反应器结构参数和运行参数进行组合优化分析;耦合相变材料(PCMs)提高吸氢和解吸过程的能量利用效率;合理调节储氢系统动力学,保证与氢燃料电池耦合的动态稳定性;构建基于深度学习方法的智能储氢系统,提高储氢性能和热管理的预测和决策能力。通过对这些研究方向的探索,可望在未来实现更高的效率和更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Hydrogen Storage Performance of Metal Hydrides in Ships: A Review

Enhancing Hydrogen Storage Performance of Metal Hydrides in Ships: A Review

Some metals and metal alloys can store gaseous hydrogen (GH2), making the storage of hydrogen in metal hydrides (MHs) possible. The present work aims to explore the development of marine MHs and technologies for enhancing hydrogen storage performance while identifying future research priorities. First, the mechanism of MHs hydrogen storage is summarized and its applications in the maritime field are introduced. Subsequently, the technical and economic feasibility of utilizing MHs hydrogen storage technology in ships is analyzed along with the application scenarios and requirements of ship-based MHs. Furthermore, to meet the target requirements for hydrogen storage properties in ship power systems, this review focuses on several aspects: the hydrogen storage materials, reactor structural parameters, hydrogen storage operating conditions, and thermal management optimization. The factors influencing the performance of MHs hydrogen storage systems and their impacts are summarized. Strategies to enhance the performance of MHs hydrogen storage are proposed and technologies for heat transfer enhancement in MHs hydrogen storage, along with the corresponding thermal management systems, are introduced. Finally, future research directions for ship-based MHs hydrogen storage are outlined: developing new synthesis routes for novel MH hydrogen storage materials; creating microchannel hydrogen storage reactors with excellent hydrogen storage and heat transfer performance and conducting combined optimization analyses of multiple reactor structural parameters and operational parameters; coupling phase change materials (PCMs) to enhance the energy utilization efficiency of the hydrogen absorption and desorption process; reasonably regulating the kinetics of the hydrogen storage system to ensure the dynamic stability coupled with hydrogen fuel cells; and constructing intelligent hydrogen storage systems based on deep learning methods to improve the predictive and decision-making capabilities for hydrogen storage performance and thermal management. Through exploring these research directions, MHs hydrogen storage technology is anticipated to achieve greater efficiency and wider applications in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信