大火山喷发强迫效率的饱和和温度响应

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Eirik Rolland Enger, Rune Graversen, Audun Theodorsen
{"title":"大火山喷发强迫效率的饱和和温度响应","authors":"Eirik Rolland Enger,&nbsp;Rune Graversen,&nbsp;Audun Theodorsen","doi":"10.1029/2024JD041098","DOIUrl":null,"url":null,"abstract":"<p>Volcanic eruptions cause climate cooling due to the reflection of solar radiation by emitted and subsequently produced aerosols. The climate effect of an eruption may last for about a decade and is nonlinearly tied to the amount of injected <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{SO}}_{2}$</annotation>\n </semantics></math> from the eruption. We investigate the climatic effects of volcanic eruptions, ranging from Mt. Pinatubo-sized events to supereruptions. The study is based on ensemble simulations in the Community Earth System Model Version 2 (CESM2) climate model applying the Whole Atmosphere Community Climate Model Version 6 (WACCM6) atmosphere model, using a coupled ocean and fixed sea surface temperature setting. Our analysis focuses on the impact of different levels of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{SO}}_{2}$</annotation>\n </semantics></math> injections on stratospheric aerosol optical depth (SAOD), effective radiative forcing (ERF), and global mean surface temperature (GMST) anomalies. We uncover a notable time-dependent decrease in aerosol forcing efficiency (ERF normalized by SAOD) for all eruption <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{SO}}_{2}$</annotation>\n </semantics></math> levels during the first posteruption year. In addition, it is revealed that the largest eruptions investigated in this study, including several previous supereruption simulations, provide peak ERF anomalies bounded at <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>65</mn>\n <mspace></mspace>\n <mi>W</mi>\n <mspace></mspace>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${-}65\\,\\mathrm{W}\\,{\\mathrm{m}}^{-2}$</annotation>\n </semantics></math>. Further, a close linear relationship between peak GMST and ERF effectively bounds the GMST anomaly to, at most, approximately <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>10</mn>\n <mspace></mspace>\n <mi>K</mi>\n </mrow>\n <annotation> ${-}10\\,\\mathrm{K}$</annotation>\n </semantics></math>. This is consistent across several previous studies using different climate models.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturation in Forcing Efficiency and Temperature Response of Large Volcanic Eruptions\",\"authors\":\"Eirik Rolland Enger,&nbsp;Rune Graversen,&nbsp;Audun Theodorsen\",\"doi\":\"10.1029/2024JD041098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Volcanic eruptions cause climate cooling due to the reflection of solar radiation by emitted and subsequently produced aerosols. The climate effect of an eruption may last for about a decade and is nonlinearly tied to the amount of injected <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>SO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{SO}}_{2}$</annotation>\\n </semantics></math> from the eruption. We investigate the climatic effects of volcanic eruptions, ranging from Mt. Pinatubo-sized events to supereruptions. The study is based on ensemble simulations in the Community Earth System Model Version 2 (CESM2) climate model applying the Whole Atmosphere Community Climate Model Version 6 (WACCM6) atmosphere model, using a coupled ocean and fixed sea surface temperature setting. Our analysis focuses on the impact of different levels of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>SO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{SO}}_{2}$</annotation>\\n </semantics></math> injections on stratospheric aerosol optical depth (SAOD), effective radiative forcing (ERF), and global mean surface temperature (GMST) anomalies. We uncover a notable time-dependent decrease in aerosol forcing efficiency (ERF normalized by SAOD) for all eruption <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>SO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{SO}}_{2}$</annotation>\\n </semantics></math> levels during the first posteruption year. In addition, it is revealed that the largest eruptions investigated in this study, including several previous supereruption simulations, provide peak ERF anomalies bounded at <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>65</mn>\\n <mspace></mspace>\\n <mi>W</mi>\\n <mspace></mspace>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${-}65\\\\,\\\\mathrm{W}\\\\,{\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math>. Further, a close linear relationship between peak GMST and ERF effectively bounds the GMST anomaly to, at most, approximately <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>10</mn>\\n <mspace></mspace>\\n <mi>K</mi>\\n </mrow>\\n <annotation> ${-}10\\\\,\\\\mathrm{K}$</annotation>\\n </semantics></math>. This is consistent across several previous studies using different climate models.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 9\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041098\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041098","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

火山爆发引起的气候变冷是由于太阳辐射被释放出来的和随后产生的气溶胶反射。火山喷发对气候的影响可能持续10年左右,并与火山喷发注入的so2 ${\text{SO}}_{2}$非线性相关。我们研究了火山爆发对气候的影响,范围从皮纳图博火山规模的事件到超级喷发。本研究基于群落地球系统模式第2版(CESM2)气候模式的集合模拟,采用全大气群落气候模式第6版(WACCM6)大气模式,采用海洋和固定海面温度耦合设置。本文分析了不同水平so2 ${\text{SO}}_{2}$注入对平流层气溶胶光学深度(SAOD)、有效辐射强迫(ERF)和全球平均地表温度(GMST)异常的影响。我们发现,在喷发后的第一年,所有喷发so2 ${\text{SO}}_{2}$水平的气溶胶强迫效率(ERF按SAOD归一化)都有显著的时间依赖性下降。此外,研究还揭示了本研究中调查的最大的火山爆发,包括之前的几次超级火山爆发模拟,提供峰值ERF异常,边界为- 65 W m -2 ${-}65\,\ mathm {W}\,{\ mathm {m}}^{-2}$。此外,GMST峰值与ERF之间的密切线性关系有效地将GMST异常限制在最多约为−10 K ${-}10\,\ mathm {K}$。这在之前使用不同气候模型的几项研究中是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saturation in Forcing Efficiency and Temperature Response of Large Volcanic Eruptions

Volcanic eruptions cause climate cooling due to the reflection of solar radiation by emitted and subsequently produced aerosols. The climate effect of an eruption may last for about a decade and is nonlinearly tied to the amount of injected SO 2 ${\text{SO}}_{2}$ from the eruption. We investigate the climatic effects of volcanic eruptions, ranging from Mt. Pinatubo-sized events to supereruptions. The study is based on ensemble simulations in the Community Earth System Model Version 2 (CESM2) climate model applying the Whole Atmosphere Community Climate Model Version 6 (WACCM6) atmosphere model, using a coupled ocean and fixed sea surface temperature setting. Our analysis focuses on the impact of different levels of SO 2 ${\text{SO}}_{2}$ injections on stratospheric aerosol optical depth (SAOD), effective radiative forcing (ERF), and global mean surface temperature (GMST) anomalies. We uncover a notable time-dependent decrease in aerosol forcing efficiency (ERF normalized by SAOD) for all eruption SO 2 ${\text{SO}}_{2}$ levels during the first posteruption year. In addition, it is revealed that the largest eruptions investigated in this study, including several previous supereruption simulations, provide peak ERF anomalies bounded at 65 W m 2 ${-}65\,\mathrm{W}\,{\mathrm{m}}^{-2}$ . Further, a close linear relationship between peak GMST and ERF effectively bounds the GMST anomaly to, at most, approximately 10 K ${-}10\,\mathrm{K}$ . This is consistent across several previous studies using different climate models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信