20Kh13钢上氮化钛涂层的附着强度

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING
V. M. Yurov, A. T. Berdibekov, S. A. Guchenko, V. V. Gruzin
{"title":"20Kh13钢上氮化钛涂层的附着强度","authors":"V. M. Yurov,&nbsp;A. T. Berdibekov,&nbsp;S. A. Guchenko,&nbsp;V. V. Gruzin","doi":"10.1134/S003602952570051X","DOIUrl":null,"url":null,"abstract":"<p>Primary nanocracks appear in 20Kh13 steel due to the state of stress associated with the relaxation of its surface. The nanocrack size is 1.21 nm. After 100 ns or more, these nanocracks transform 121-nm mesocracks. When titanium nitride is ion-plasma sprayed, its ions diffuse into the steel and form an interphase (transition) layer about 130 nm (121 nm) in size. The size of this layer is experimentally measured on the cleavage of a turbine blade using a MIRA 3 (TESCAN) electron microscope and a Quanta 200 3D system. A TiN coating with a hardness <i>H</i><sub>TiN</sub> ≈ 21 000 MPa is at the top of this layer. 20Kh13 steel with an ultimate tensile strength σ<sub>u</sub> = 830 MPa is at the bottom of this layer. <i>H</i> ≈ 3000 MPa of the transition layer should be called the adhesion strength of the titanium nitride coating on a turbine blade made of 20Kh13 steel. To separate the TiN coating from the 20Kh13 steel, it is necessary to do the work of adhesion <i>W</i><sub>a</sub> = 2.620 J/m<sup>2</sup>, which gives σ<sub>a</sub> = 2260 MPa for the stress in the transition layer. This stress in the transition layer is close to <i>H</i> ≈ 3000 MPa. This means that we propose a model of primary cracks, which can be used to estimate adhesion strength theoretically.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":"2024 11","pages":"1920 - 1924"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhesion Strength of Titanium Nitride Coatings on 20Kh13 Steel\",\"authors\":\"V. M. Yurov,&nbsp;A. T. Berdibekov,&nbsp;S. A. Guchenko,&nbsp;V. V. Gruzin\",\"doi\":\"10.1134/S003602952570051X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Primary nanocracks appear in 20Kh13 steel due to the state of stress associated with the relaxation of its surface. The nanocrack size is 1.21 nm. After 100 ns or more, these nanocracks transform 121-nm mesocracks. When titanium nitride is ion-plasma sprayed, its ions diffuse into the steel and form an interphase (transition) layer about 130 nm (121 nm) in size. The size of this layer is experimentally measured on the cleavage of a turbine blade using a MIRA 3 (TESCAN) electron microscope and a Quanta 200 3D system. A TiN coating with a hardness <i>H</i><sub>TiN</sub> ≈ 21 000 MPa is at the top of this layer. 20Kh13 steel with an ultimate tensile strength σ<sub>u</sub> = 830 MPa is at the bottom of this layer. <i>H</i> ≈ 3000 MPa of the transition layer should be called the adhesion strength of the titanium nitride coating on a turbine blade made of 20Kh13 steel. To separate the TiN coating from the 20Kh13 steel, it is necessary to do the work of adhesion <i>W</i><sub>a</sub> = 2.620 J/m<sup>2</sup>, which gives σ<sub>a</sub> = 2260 MPa for the stress in the transition layer. This stress in the transition layer is close to <i>H</i> ≈ 3000 MPa. This means that we propose a model of primary cracks, which can be used to estimate adhesion strength theoretically.</p>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":\"2024 11\",\"pages\":\"1920 - 1924\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S003602952570051X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S003602952570051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在20Kh13钢中,由于与表面松弛相关的应力状态,产生了初级纳米裂纹。纳米裂纹尺寸为1.21 nm。在100纳米或更长时间后,这些纳米裂纹转变为121纳米的介裂纹。当离子等离子体喷射氮化钛时,其离子扩散到钢中并形成约130 nm (121 nm)大小的相间(过渡)层。利用MIRA 3 (TESCAN)电子显微镜和Quanta 200 3D系统,在涡轮叶片的劈裂上实验测量了该层的大小。该层的顶部是一层硬度HTiN≈21000 MPa的TiN涂层。极限抗拉强度σu = 830 MPa的20Kh13钢在该层底部。过渡层的H≈3000mpa称为20Kh13钢涡轮叶片上氮化钛涂层的附着强度。为了使TiN涂层与20Kh13钢分离,需要做的附着功为Wa = 2.620 J/m2,得到过渡层的应力σa = 2260 MPa。过渡层的应力接近H≈3000 MPa。这意味着我们提出了一个原始裂纹模型,可以用来估计理论上的粘着强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adhesion Strength of Titanium Nitride Coatings on 20Kh13 Steel

Primary nanocracks appear in 20Kh13 steel due to the state of stress associated with the relaxation of its surface. The nanocrack size is 1.21 nm. After 100 ns or more, these nanocracks transform 121-nm mesocracks. When titanium nitride is ion-plasma sprayed, its ions diffuse into the steel and form an interphase (transition) layer about 130 nm (121 nm) in size. The size of this layer is experimentally measured on the cleavage of a turbine blade using a MIRA 3 (TESCAN) electron microscope and a Quanta 200 3D system. A TiN coating with a hardness HTiN ≈ 21 000 MPa is at the top of this layer. 20Kh13 steel with an ultimate tensile strength σu = 830 MPa is at the bottom of this layer. H ≈ 3000 MPa of the transition layer should be called the adhesion strength of the titanium nitride coating on a turbine blade made of 20Kh13 steel. To separate the TiN coating from the 20Kh13 steel, it is necessary to do the work of adhesion Wa = 2.620 J/m2, which gives σa = 2260 MPa for the stress in the transition layer. This stress in the transition layer is close to H ≈ 3000 MPa. This means that we propose a model of primary cracks, which can be used to estimate adhesion strength theoretically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Metallurgy (Metally)
Russian Metallurgy (Metally) METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
0.70
自引率
25.00%
发文量
140
期刊介绍: Russian Metallurgy (Metally)  publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信