EduPlanner:基于法学硕士的定制智能教学设计多代理系统

IF 2.9 3区 教育学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xueqiao Zhang;Chao Zhang;Jianwen Sun;Jun Xiao;Yi Yang;Yawei Luo
{"title":"EduPlanner:基于法学硕士的定制智能教学设计多代理系统","authors":"Xueqiao Zhang;Chao Zhang;Jianwen Sun;Jun Xiao;Yi Yang;Yawei Luo","doi":"10.1109/TLT.2025.3561332","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) <italic>customized generation:</i> generating niche-targeted teaching content based on students' varying learning abilities and states and 2) <italic>intelligent optimization:</i> iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing <bold>C</b>larity, <bold>I</b>ntegrity, <bold>D</b>epth, <bold>P</b>racticality, and <bold>P</b>ertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"416-427"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EduPlanner: LLM-Based Multiagent Systems for Customized and Intelligent Instructional Design\",\"authors\":\"Xueqiao Zhang;Chao Zhang;Jianwen Sun;Jun Xiao;Yi Yang;Yawei Luo\",\"doi\":\"10.1109/TLT.2025.3561332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) <italic>customized generation:</i> generating niche-targeted teaching content based on students' varying learning abilities and states and 2) <italic>intelligent optimization:</i> iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing <bold>C</b>larity, <bold>I</b>ntegrity, <bold>D</b>epth, <bold>P</b>racticality, and <bold>P</b>ertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework.\",\"PeriodicalId\":49191,\"journal\":{\"name\":\"IEEE Transactions on Learning Technologies\",\"volume\":\"18 \",\"pages\":\"416-427\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Learning Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10966044/\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10966044/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在人工通用智能时代,大型语言模型(llm)对智能教育有着重要的推动作用。一个很有前景的应用是课程和学习活动教学设计的自动泛化,重点关注两个关键方面:1)定制生成:根据学生不同的学习能力和状态生成有针对性的小众教学内容;2)智能优化:根据学习效果或考试成绩的反馈迭代优化内容。目前,单一的大型LLM无法有效管理整个过程,这对智能教学计划的设计提出了挑战。为了解决这些问题,我们开发了EduPlanner,这是一个基于法学硕士的多智能体系统,包括一个评估智能体、一个优化智能体和一个问题分析智能体,通过对抗性协作为课程和学习活动生成定制的智能教学设计。以数学课为例,EduPlanner采用新颖的Skill-Tree结构,准确建模学生群体的数学背景知识,根据学生的知识水平和学习能力,对课程和学习活动进行个性化的教学设计。此外,我们还引入了基于llm的5维评估模块CIDDP,包括清晰度,完整性,深度,实用性和针对性,以全面评估数学教案质量并引导智能优化。在GSM8K和代数数据集上进行的实验表明,EduPlanner在评估和优化课程和学习活动的教学设计方面表现出色。消融研究进一步验证了框架内各组成部分的重要性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EduPlanner: LLM-Based Multiagent Systems for Customized and Intelligent Instructional Design
Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: generating niche-targeted teaching content based on students' varying learning abilities and states and 2) intelligent optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing Clarity, Integrity, Depth, Practicality, and Pertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Learning Technologies
IEEE Transactions on Learning Technologies COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
7.50
自引率
5.40%
发文量
82
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信