基于强化学习的任务参数化动态运动原语改进运动规划

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Kaiqi Huang;Xiaochun Ji;Jianhua Su;Xiaoyi Qu
{"title":"基于强化学习的任务参数化动态运动原语改进运动规划","authors":"Kaiqi Huang;Xiaochun Ji;Jianhua Su;Xiaoyi Qu","doi":"10.1109/LRA.2025.3560876","DOIUrl":null,"url":null,"abstract":"Online trajectory planning in unstructured environments poses significant challenges for mobile robots, particularly when navigating complex obstacles. Traditional learning-from-demonstration (LfD) methods depend on offline datasets, limiting their ability to adapt to varying obstacle shapes and dynamic conditions. To address these limitations, we propose a novel motion planning framework that combines global trajectory generation with local adaptability. Dynamic Movement Primitives (DMPs) are employed to generate global trajectories based on demonstrations, while Task-Parameterized Potential Fields (TPPFs) enhance local adaptability. The Policy Improvement through Path Integrals (PI<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>) algorithm is utilized to optimize model parameters. The TPPF framework consists of two key components: (a) an obstacle avoidance field, which accounts for the robot's size, obstacle dimensions, and relative distances, allowing effective volumetric avoidance without extensive modeling; and (b) an attractive field, which directs the robot toward task-specific goals while steering it away from undesirable paths. By leveraging the PI<inline-formula><tex-math>$^{2}$</tex-math></inline-formula> algorithm, model parameters are optimized to produce trajectories that preserve the characteristics of demonstrated motions, while improving obstacle avoidance and task-oriented navigation. Experiments conducted in both simulations and dynamic real-world scenarios validate the proposed framework's effectiveness, demonstrating smoother trajectories and enhanced obstacle avoidance compared to baseline approaches.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5457-5464"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task-Parameterized Dynamic Movement Primitives With Reinforcement Learning for Improved Motion Planning\",\"authors\":\"Kaiqi Huang;Xiaochun Ji;Jianhua Su;Xiaoyi Qu\",\"doi\":\"10.1109/LRA.2025.3560876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online trajectory planning in unstructured environments poses significant challenges for mobile robots, particularly when navigating complex obstacles. Traditional learning-from-demonstration (LfD) methods depend on offline datasets, limiting their ability to adapt to varying obstacle shapes and dynamic conditions. To address these limitations, we propose a novel motion planning framework that combines global trajectory generation with local adaptability. Dynamic Movement Primitives (DMPs) are employed to generate global trajectories based on demonstrations, while Task-Parameterized Potential Fields (TPPFs) enhance local adaptability. The Policy Improvement through Path Integrals (PI<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>) algorithm is utilized to optimize model parameters. The TPPF framework consists of two key components: (a) an obstacle avoidance field, which accounts for the robot's size, obstacle dimensions, and relative distances, allowing effective volumetric avoidance without extensive modeling; and (b) an attractive field, which directs the robot toward task-specific goals while steering it away from undesirable paths. By leveraging the PI<inline-formula><tex-math>$^{2}$</tex-math></inline-formula> algorithm, model parameters are optimized to produce trajectories that preserve the characteristics of demonstrated motions, while improving obstacle avoidance and task-oriented navigation. Experiments conducted in both simulations and dynamic real-world scenarios validate the proposed framework's effectiveness, demonstrating smoother trajectories and enhanced obstacle avoidance compared to baseline approaches.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"5457-5464\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964858/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964858/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

非结构化环境中的在线轨迹规划对移动机器人提出了重大挑战,特别是在导航复杂障碍物时。传统的从演示中学习(LfD)方法依赖于离线数据集,限制了它们适应不同障碍物形状和动态条件的能力。为了解决这些限制,我们提出了一种新的运动规划框架,将全局轨迹生成与局部适应性相结合。动态运动原语(Dynamic Movement Primitives, dmp)用于生成基于演示的全局轨迹,而任务参数化势场(Task-Parameterized Potential Fields, tppf)用于增强局部适应性。采用路径积分策略改进算法(PI$^{2}$)对模型参数进行优化。TPPF框架由两个关键部分组成:(a)避障场,该避障场考虑了机器人的尺寸、障碍物尺寸和相对距离,允许在不进行大量建模的情况下进行有效的体积避障;(b)一个有吸引力的领域,引导机器人走向特定的任务目标,同时引导它远离不受欢迎的路径。通过利用PI$^{2}$算法,优化模型参数以产生保留演示运动特征的轨迹,同时提高障碍物回避和任务导向导航。在模拟和动态现实场景中进行的实验验证了所提出框架的有效性,与基线方法相比,显示出更平滑的轨迹和增强的避障能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task-Parameterized Dynamic Movement Primitives With Reinforcement Learning for Improved Motion Planning
Online trajectory planning in unstructured environments poses significant challenges for mobile robots, particularly when navigating complex obstacles. Traditional learning-from-demonstration (LfD) methods depend on offline datasets, limiting their ability to adapt to varying obstacle shapes and dynamic conditions. To address these limitations, we propose a novel motion planning framework that combines global trajectory generation with local adaptability. Dynamic Movement Primitives (DMPs) are employed to generate global trajectories based on demonstrations, while Task-Parameterized Potential Fields (TPPFs) enhance local adaptability. The Policy Improvement through Path Integrals (PI$^{2}$) algorithm is utilized to optimize model parameters. The TPPF framework consists of two key components: (a) an obstacle avoidance field, which accounts for the robot's size, obstacle dimensions, and relative distances, allowing effective volumetric avoidance without extensive modeling; and (b) an attractive field, which directs the robot toward task-specific goals while steering it away from undesirable paths. By leveraging the PI$^{2}$ algorithm, model parameters are optimized to produce trajectories that preserve the characteristics of demonstrated motions, while improving obstacle avoidance and task-oriented navigation. Experiments conducted in both simulations and dynamic real-world scenarios validate the proposed framework's effectiveness, demonstrating smoother trajectories and enhanced obstacle avoidance compared to baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信