不平整地形无梯度动力学规划的遗传方法

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Otobong Jerome;Alexandr Klimchik;Alexander Maloletov;Geesara Kulathunga
{"title":"不平整地形无梯度动力学规划的遗传方法","authors":"Otobong Jerome;Alexandr Klimchik;Alexander Maloletov;Geesara Kulathunga","doi":"10.1109/LRA.2025.3560883","DOIUrl":null,"url":null,"abstract":"This letter proposes a genetic algorithm-based kinodynamic planning algorithm (GAKD) for car-like vehicles navigating uneven terrains modeled as triangular meshes. The algorithm's distinct feature is trajectory optimization over a receding horizon of fixed length using a genetic algorithm with heuristic-based mutation, ensuring the vehicle's controls remain within its valid operational range. By addressing the unique challenges posed by uneven terrain meshes, such as changes face normals along the path, GAKD offers a practical solution for path planning in complex environments. Comparative evaluations against the Model Predictive Path Integral (MPPI) and log-MPPI methods show that GAKD achieves up to a 20% improvement in traversability cost while maintaining comparable path length. These results demonstrate the potential of GAKD in improving vehicle navigation on challenging terrains.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5521-5528"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genetic Approach to Gradient-Free Kinodynamic Planning in Uneven Terrains\",\"authors\":\"Otobong Jerome;Alexandr Klimchik;Alexander Maloletov;Geesara Kulathunga\",\"doi\":\"10.1109/LRA.2025.3560883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a genetic algorithm-based kinodynamic planning algorithm (GAKD) for car-like vehicles navigating uneven terrains modeled as triangular meshes. The algorithm's distinct feature is trajectory optimization over a receding horizon of fixed length using a genetic algorithm with heuristic-based mutation, ensuring the vehicle's controls remain within its valid operational range. By addressing the unique challenges posed by uneven terrain meshes, such as changes face normals along the path, GAKD offers a practical solution for path planning in complex environments. Comparative evaluations against the Model Predictive Path Integral (MPPI) and log-MPPI methods show that GAKD achieves up to a 20% improvement in traversability cost while maintaining comparable path length. These results demonstrate the potential of GAKD in improving vehicle navigation on challenging terrains.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"5521-5528\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965467/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965467/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种基于遗传算法的动力学规划算法(GAKD),用于类似汽车的车辆在以三角形网格为模型的不平坦地形中导航。该算法的显著特点是利用启发式突变遗传算法在固定长度的后退地平线上进行轨迹优化,确保车辆控制保持在有效的操作范围内。GAKD为复杂环境下的路径规划提供了一个实用的解决方案,解决了不平坦地形网格所带来的独特挑战,例如路径上的法线变化。与模型预测路径积分(MPPI)和对数-MPPI方法的比较评估表明,GAKD在保持可比路径长度的情况下,可将可遍历成本提高20%。这些结果证明了GAKD在改善具有挑战性地形上的车辆导航方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Approach to Gradient-Free Kinodynamic Planning in Uneven Terrains
This letter proposes a genetic algorithm-based kinodynamic planning algorithm (GAKD) for car-like vehicles navigating uneven terrains modeled as triangular meshes. The algorithm's distinct feature is trajectory optimization over a receding horizon of fixed length using a genetic algorithm with heuristic-based mutation, ensuring the vehicle's controls remain within its valid operational range. By addressing the unique challenges posed by uneven terrain meshes, such as changes face normals along the path, GAKD offers a practical solution for path planning in complex environments. Comparative evaluations against the Model Predictive Path Integral (MPPI) and log-MPPI methods show that GAKD achieves up to a 20% improvement in traversability cost while maintaining comparable path length. These results demonstrate the potential of GAKD in improving vehicle navigation on challenging terrains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信