{"title":"耦合非线性Brezis-Nirenberg Maxwell系统完全非平凡基态解的存在性","authors":"Cong Li , Yong Liu , Jun Wang , Wen Yang","doi":"10.1016/j.jde.2025.113374","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the existence of fully nontrivial solutions to the following nonlinear Brezis-Nirenberg Maxwell system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>∇</mi><mo>×</mo><mi>∇</mi><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>∇</mi><mo>×</mo><mi>∇</mi><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>6</mn><mo>]</mo></math></span>, and <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is a simply connected, smooth, bounded Lipschitz domain with connected boundary, and <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> are the exterior normal. This system originates from the time-harmonic Maxwell equations and possesses a variational structure. We address both general subcritical cases and Sobolev critical cases, establishing the existence of a fully nontrivial ground state solution with cylindrical symmetry. Additionally, we prove several properties of these solutions. To achieve this, we develop a new critical point theory that not only resolves the current problem but also facilitates the treatment of more general anisotropic media and other variational problems. Notably, our results provide a positive answer to the open problem posed by T. Bartsch and J. Mederski in <span><span>[7, Page 982, Problem 3]</span></span>. Moreover, from a purely mathematical perspective, we extend the partial results from <span><math><mi>N</mi><mo>=</mo><mn>3</mn></math></span> to the case of <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113374"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of the fully nontrivial ground state solutions for the coupled nonlinear Brezis-Nirenberg Maxwell system\",\"authors\":\"Cong Li , Yong Liu , Jun Wang , Wen Yang\",\"doi\":\"10.1016/j.jde.2025.113374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we explore the existence of fully nontrivial solutions to the following nonlinear Brezis-Nirenberg Maxwell system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>∇</mi><mo>×</mo><mi>∇</mi><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>∇</mi><mo>×</mo><mi>∇</mi><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>6</mn><mo>]</mo></math></span>, and <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is a simply connected, smooth, bounded Lipschitz domain with connected boundary, and <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> are the exterior normal. This system originates from the time-harmonic Maxwell equations and possesses a variational structure. We address both general subcritical cases and Sobolev critical cases, establishing the existence of a fully nontrivial ground state solution with cylindrical symmetry. Additionally, we prove several properties of these solutions. To achieve this, we develop a new critical point theory that not only resolves the current problem but also facilitates the treatment of more general anisotropic media and other variational problems. Notably, our results provide a positive answer to the open problem posed by T. Bartsch and J. Mederski in <span><span>[7, Page 982, Problem 3]</span></span>. Moreover, from a purely mathematical perspective, we extend the partial results from <span><math><mi>N</mi><mo>=</mo><mn>3</mn></math></span> to the case of <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"438 \",\"pages\":\"Article 113374\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of the fully nontrivial ground state solutions for the coupled nonlinear Brezis-Nirenberg Maxwell system
In this paper, we explore the existence of fully nontrivial solutions to the following nonlinear Brezis-Nirenberg Maxwell system where , , and is a simply connected, smooth, bounded Lipschitz domain with connected boundary, and are the exterior normal. This system originates from the time-harmonic Maxwell equations and possesses a variational structure. We address both general subcritical cases and Sobolev critical cases, establishing the existence of a fully nontrivial ground state solution with cylindrical symmetry. Additionally, we prove several properties of these solutions. To achieve this, we develop a new critical point theory that not only resolves the current problem but also facilitates the treatment of more general anisotropic media and other variational problems. Notably, our results provide a positive answer to the open problem posed by T. Bartsch and J. Mederski in [7, Page 982, Problem 3]. Moreover, from a purely mathematical perspective, we extend the partial results from to the case of .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics