Congyu Wang , Fangfang Chen , Pengjiang Xu , Hongmei Cao , Wei Wang , Qie Sun
{"title":"以柔性为重点的亚临界燃煤电厂动态仿真","authors":"Congyu Wang , Fangfang Chen , Pengjiang Xu , Hongmei Cao , Wei Wang , Qie Sun","doi":"10.1016/j.apenergy.2025.125976","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing integration of intermittent renewable energy sources necessitates greater flexibility from coal-fired power plants. However, limited research has been conducted on the effect of thermal inertia on the ramp rates and the transient fuel consumption of subcritical power plants, when they are used as flexible power sources. Therefore, this study developed a system-level, high-fidelity dynamic model of a subcritical coal-fired power plant to fill the knowledge gap. The model's accuracy is validated against real-world plant data. The load-variation processes between 30 %P<sub>N</sub> and 100 %P<sub>N</sub> were simulated, where ramp rates and transient fuel consumption in different load ratio intervals were evaluated. Due to the effects of thermal inertia, the highest ramp rate that the subcritical power plant could provide is below 2 %P<sub>N</sub>/min. Unlike supercritical power plants, the power deviation in subcritical power plants is the critical limitation to ramp rates rather than the deviation in main or reheated steam temperature. Moreover, a large disparity in fuel consumption between the dynamic model and a steady-state model is observed. Compared to the steady-state model, the dynamic model predicts 4.92 % lower fuel consumption during the load-decrease process and 5.29 % higher fuel consumption during the load-increase process. In addition, the system's responses to automatic generation control (AGC) commands were investigated. The results demonstrate that the load-reciprocating stage exhibits the lowest comprehensive performance indicator <em>K</em><sub>p</sub> of 0.51, significantly lower than the load-increase (<em>K</em><sub>p</sub> = 1.78) and load-decrease (<em>K</em><sub>p</sub> = 1.62) stages, due to the effects of thermal inertia.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"392 ","pages":"Article 125976"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic simulation of a subcritical coal-fired power plant with the emphasis on flexibility\",\"authors\":\"Congyu Wang , Fangfang Chen , Pengjiang Xu , Hongmei Cao , Wei Wang , Qie Sun\",\"doi\":\"10.1016/j.apenergy.2025.125976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing integration of intermittent renewable energy sources necessitates greater flexibility from coal-fired power plants. However, limited research has been conducted on the effect of thermal inertia on the ramp rates and the transient fuel consumption of subcritical power plants, when they are used as flexible power sources. Therefore, this study developed a system-level, high-fidelity dynamic model of a subcritical coal-fired power plant to fill the knowledge gap. The model's accuracy is validated against real-world plant data. The load-variation processes between 30 %P<sub>N</sub> and 100 %P<sub>N</sub> were simulated, where ramp rates and transient fuel consumption in different load ratio intervals were evaluated. Due to the effects of thermal inertia, the highest ramp rate that the subcritical power plant could provide is below 2 %P<sub>N</sub>/min. Unlike supercritical power plants, the power deviation in subcritical power plants is the critical limitation to ramp rates rather than the deviation in main or reheated steam temperature. Moreover, a large disparity in fuel consumption between the dynamic model and a steady-state model is observed. Compared to the steady-state model, the dynamic model predicts 4.92 % lower fuel consumption during the load-decrease process and 5.29 % higher fuel consumption during the load-increase process. In addition, the system's responses to automatic generation control (AGC) commands were investigated. The results demonstrate that the load-reciprocating stage exhibits the lowest comprehensive performance indicator <em>K</em><sub>p</sub> of 0.51, significantly lower than the load-increase (<em>K</em><sub>p</sub> = 1.78) and load-decrease (<em>K</em><sub>p</sub> = 1.62) stages, due to the effects of thermal inertia.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"392 \",\"pages\":\"Article 125976\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925007068\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925007068","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Dynamic simulation of a subcritical coal-fired power plant with the emphasis on flexibility
The increasing integration of intermittent renewable energy sources necessitates greater flexibility from coal-fired power plants. However, limited research has been conducted on the effect of thermal inertia on the ramp rates and the transient fuel consumption of subcritical power plants, when they are used as flexible power sources. Therefore, this study developed a system-level, high-fidelity dynamic model of a subcritical coal-fired power plant to fill the knowledge gap. The model's accuracy is validated against real-world plant data. The load-variation processes between 30 %PN and 100 %PN were simulated, where ramp rates and transient fuel consumption in different load ratio intervals were evaluated. Due to the effects of thermal inertia, the highest ramp rate that the subcritical power plant could provide is below 2 %PN/min. Unlike supercritical power plants, the power deviation in subcritical power plants is the critical limitation to ramp rates rather than the deviation in main or reheated steam temperature. Moreover, a large disparity in fuel consumption between the dynamic model and a steady-state model is observed. Compared to the steady-state model, the dynamic model predicts 4.92 % lower fuel consumption during the load-decrease process and 5.29 % higher fuel consumption during the load-increase process. In addition, the system's responses to automatic generation control (AGC) commands were investigated. The results demonstrate that the load-reciprocating stage exhibits the lowest comprehensive performance indicator Kp of 0.51, significantly lower than the load-increase (Kp = 1.78) and load-decrease (Kp = 1.62) stages, due to the effects of thermal inertia.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.