Wesley Jeevadason Aruldoss , C. Bharatiraja , Sanjeevikumar Padmanaban
{"title":"评估能源-能源-经济-环境足迹-环境经济学(5e)框架和可持续性指标,以双楔形太阳能蒸馏器海水淡化系统为例","authors":"Wesley Jeevadason Aruldoss , C. Bharatiraja , Sanjeevikumar Padmanaban","doi":"10.1016/j.csite.2025.106173","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates a Twin Wedge Solar Still (TWSS) against a Conventional Solar Still (CSS) using the 5E framework (energy efficiency, exercise efficiency, economic sustainability, environmental impact, environmental economics) and sustainability index criteria. Results under different temperature conditions indicate that TWSS achieves higher freshwater productivity and thermal energy efficiency, ranging from 17.7 % to 27.9 %, especially during times of low solar radiation. This improvement is due to the twin wedge glass cover design, which increases the condensation surface and aperture area to absorb solar radiation. Economically, TWSS reduces the production cost per litre by 33 % compared to CSS, which has a sustainability index of 1.018. From an environmental point of view, it reduces CO<sub>2</sub>, NO<sub>X</sub> and SO<sub>2</sub> emissions by 19 %–42.4 % and shows reduced toxicity by 30 %–36.8 % in impact categories such as Global Warming Potential (GWP), Acidification Potential (AP) and Human Toxicity Potential (HTP). These advantages make TWSS an excellent option for freshwater production, especially in remote areas. Future research will focus on detailed Life Cycle Analysis (LCA) and Life Cycle Costing (LCC), including production, operation and disposal. In addition, the integration of energy storage and hybridization can increase efficiency and competitiveness compared to conventional desalination methods.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106173"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating energy-exergy-economics-environmental footprint-enviroeconomics (5e) framework and sustainability metrics with a case study of a twin wedge solar still based desalination system\",\"authors\":\"Wesley Jeevadason Aruldoss , C. Bharatiraja , Sanjeevikumar Padmanaban\",\"doi\":\"10.1016/j.csite.2025.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluates a Twin Wedge Solar Still (TWSS) against a Conventional Solar Still (CSS) using the 5E framework (energy efficiency, exercise efficiency, economic sustainability, environmental impact, environmental economics) and sustainability index criteria. Results under different temperature conditions indicate that TWSS achieves higher freshwater productivity and thermal energy efficiency, ranging from 17.7 % to 27.9 %, especially during times of low solar radiation. This improvement is due to the twin wedge glass cover design, which increases the condensation surface and aperture area to absorb solar radiation. Economically, TWSS reduces the production cost per litre by 33 % compared to CSS, which has a sustainability index of 1.018. From an environmental point of view, it reduces CO<sub>2</sub>, NO<sub>X</sub> and SO<sub>2</sub> emissions by 19 %–42.4 % and shows reduced toxicity by 30 %–36.8 % in impact categories such as Global Warming Potential (GWP), Acidification Potential (AP) and Human Toxicity Potential (HTP). These advantages make TWSS an excellent option for freshwater production, especially in remote areas. Future research will focus on detailed Life Cycle Analysis (LCA) and Life Cycle Costing (LCC), including production, operation and disposal. In addition, the integration of energy storage and hybridization can increase efficiency and competitiveness compared to conventional desalination methods.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106173\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25004332\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Evaluating energy-exergy-economics-environmental footprint-enviroeconomics (5e) framework and sustainability metrics with a case study of a twin wedge solar still based desalination system
This study evaluates a Twin Wedge Solar Still (TWSS) against a Conventional Solar Still (CSS) using the 5E framework (energy efficiency, exercise efficiency, economic sustainability, environmental impact, environmental economics) and sustainability index criteria. Results under different temperature conditions indicate that TWSS achieves higher freshwater productivity and thermal energy efficiency, ranging from 17.7 % to 27.9 %, especially during times of low solar radiation. This improvement is due to the twin wedge glass cover design, which increases the condensation surface and aperture area to absorb solar radiation. Economically, TWSS reduces the production cost per litre by 33 % compared to CSS, which has a sustainability index of 1.018. From an environmental point of view, it reduces CO2, NOX and SO2 emissions by 19 %–42.4 % and shows reduced toxicity by 30 %–36.8 % in impact categories such as Global Warming Potential (GWP), Acidification Potential (AP) and Human Toxicity Potential (HTP). These advantages make TWSS an excellent option for freshwater production, especially in remote areas. Future research will focus on detailed Life Cycle Analysis (LCA) and Life Cycle Costing (LCC), including production, operation and disposal. In addition, the integration of energy storage and hybridization can increase efficiency and competitiveness compared to conventional desalination methods.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.