内外联热交换器内颗粒流动特性研究

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Yuqiu Zhang , Zehong Gu , Yongqi Liu , Haibo Gao , Yanxia Wang , Peibin Zhang , Zhuanghe Li , Zixian Gong , Ping Zhang
{"title":"内外联热交换器内颗粒流动特性研究","authors":"Yuqiu Zhang ,&nbsp;Zehong Gu ,&nbsp;Yongqi Liu ,&nbsp;Haibo Gao ,&nbsp;Yanxia Wang ,&nbsp;Peibin Zhang ,&nbsp;Zhuanghe Li ,&nbsp;Zixian Gong ,&nbsp;Ping Zhang","doi":"10.1016/j.csite.2025.106206","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenge of inefficient waste heat recovery from high-temperature solid particles, crucial for energy-intensive industries, an internal and external combined heat exchanger was proposed. This novel design enhances energy efficiency in industries like metallurgy and carbon production, potentially saving significant amounts of standard coal annually. The flow characteristics of particles were studied with a visual experimental platform and equidistant point method. The flow patterns near the top and on both sides of the internal heat exchanger present “W” and “U” shaped symmetrical distribution, respectively. The particle size has a significant impact on flow trajectory and average velocity, but the initial velocity has a negligible effect. The variation range of flow trajectory with a particle size of 11 mm is 5 times that of 1.8 mm. As the particle size increases from 1.8 mm to 11 mm, the average velocity in X-axis direction of the particles increases from 6.1 × 10<sup>−6</sup> m/s to 1.2 × 10<sup>−5</sup> m/s. For particle sizes from 1.8 mm to 11 mm, the Y-axis velocity fluctuates within 4.7 × 10<sup>−5</sup> to 6.4 × 10<sup>−5</sup> m/s, and for initial velocities from 3 × 10<sup>−5</sup> to 7 × 10<sup>−5</sup> m/s, the Y-axis velocity deviates by less than 4.3 %. This work uniquely reveals how particle parameter governs flow dynamics in complex heat exchanger geometries, providing critical insights for optimizing waste heat recovery.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106206"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of particle flow characteristics in internal and external combined heat exchanger\",\"authors\":\"Yuqiu Zhang ,&nbsp;Zehong Gu ,&nbsp;Yongqi Liu ,&nbsp;Haibo Gao ,&nbsp;Yanxia Wang ,&nbsp;Peibin Zhang ,&nbsp;Zhuanghe Li ,&nbsp;Zixian Gong ,&nbsp;Ping Zhang\",\"doi\":\"10.1016/j.csite.2025.106206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the challenge of inefficient waste heat recovery from high-temperature solid particles, crucial for energy-intensive industries, an internal and external combined heat exchanger was proposed. This novel design enhances energy efficiency in industries like metallurgy and carbon production, potentially saving significant amounts of standard coal annually. The flow characteristics of particles were studied with a visual experimental platform and equidistant point method. The flow patterns near the top and on both sides of the internal heat exchanger present “W” and “U” shaped symmetrical distribution, respectively. The particle size has a significant impact on flow trajectory and average velocity, but the initial velocity has a negligible effect. The variation range of flow trajectory with a particle size of 11 mm is 5 times that of 1.8 mm. As the particle size increases from 1.8 mm to 11 mm, the average velocity in X-axis direction of the particles increases from 6.1 × 10<sup>−6</sup> m/s to 1.2 × 10<sup>−5</sup> m/s. For particle sizes from 1.8 mm to 11 mm, the Y-axis velocity fluctuates within 4.7 × 10<sup>−5</sup> to 6.4 × 10<sup>−5</sup> m/s, and for initial velocities from 3 × 10<sup>−5</sup> to 7 × 10<sup>−5</sup> m/s, the Y-axis velocity deviates by less than 4.3 %. This work uniquely reveals how particle parameter governs flow dynamics in complex heat exchanger geometries, providing critical insights for optimizing waste heat recovery.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106206\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25004666\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004666","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决高温固体颗粒废热回收效率低下的问题,提出了一种内外联式换热器。这种新颖的设计提高了冶金和碳生产等行业的能源效率,每年可能节省大量的标准煤。采用视觉实验平台和等距点法对颗粒的流动特性进行了研究。内换热器顶部附近和两侧的流型分别呈“W”形和“U”形对称分布。粒径对流动轨迹和平均速度有显著影响,但初始速度的影响可以忽略不计。当粒径为11 mm时,流动轨迹的变化幅度是1.8 mm时的5倍。随着粒径从1.8 mm增加到11 mm,颗粒在x轴方向上的平均速度从6.1 × 10−6 m/s增加到1.2 × 10−5 m/s。对于1.8 mm至11 mm的粒径,y轴速度在4.7 × 10−5至6.4 × 10−5 m/s之间波动,对于3 × 10−5至7 × 10−5 m/s的初始速度,y轴速度偏差小于4.3%。这项工作独特地揭示了颗粒参数如何控制复杂热交换器几何形状中的流动动力学,为优化废热回收提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of particle flow characteristics in internal and external combined heat exchanger
To address the challenge of inefficient waste heat recovery from high-temperature solid particles, crucial for energy-intensive industries, an internal and external combined heat exchanger was proposed. This novel design enhances energy efficiency in industries like metallurgy and carbon production, potentially saving significant amounts of standard coal annually. The flow characteristics of particles were studied with a visual experimental platform and equidistant point method. The flow patterns near the top and on both sides of the internal heat exchanger present “W” and “U” shaped symmetrical distribution, respectively. The particle size has a significant impact on flow trajectory and average velocity, but the initial velocity has a negligible effect. The variation range of flow trajectory with a particle size of 11 mm is 5 times that of 1.8 mm. As the particle size increases from 1.8 mm to 11 mm, the average velocity in X-axis direction of the particles increases from 6.1 × 10−6 m/s to 1.2 × 10−5 m/s. For particle sizes from 1.8 mm to 11 mm, the Y-axis velocity fluctuates within 4.7 × 10−5 to 6.4 × 10−5 m/s, and for initial velocities from 3 × 10−5 to 7 × 10−5 m/s, the Y-axis velocity deviates by less than 4.3 %. This work uniquely reveals how particle parameter governs flow dynamics in complex heat exchanger geometries, providing critical insights for optimizing waste heat recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信