ZnFe2O4控制合成:提高储能功能陶瓷材料性能的关键

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
O.O. Shichalin , N.P. Ivanov , A.I. Seroshtan , K.V. Nadaraia , T.L. Simonenko , K.A. Rogachev , P.A. Marmaza , A.R. Zaikova , M.A. Sin'kova , G.V. Ikhtonov , A.V. Pogodaev , E.S. Kolodeznikov , V. Yu Mayorov , E.V. Shchitovskaya , A.V. Ognev , A.S. Samardak , Shi Yun , I. Yu Buravlev , E.K. Papynov
{"title":"ZnFe2O4控制合成:提高储能功能陶瓷材料性能的关键","authors":"O.O. Shichalin ,&nbsp;N.P. Ivanov ,&nbsp;A.I. Seroshtan ,&nbsp;K.V. Nadaraia ,&nbsp;T.L. Simonenko ,&nbsp;K.A. Rogachev ,&nbsp;P.A. Marmaza ,&nbsp;A.R. Zaikova ,&nbsp;M.A. Sin'kova ,&nbsp;G.V. Ikhtonov ,&nbsp;A.V. Pogodaev ,&nbsp;E.S. Kolodeznikov ,&nbsp;V. Yu Mayorov ,&nbsp;E.V. Shchitovskaya ,&nbsp;A.V. Ognev ,&nbsp;A.S. Samardak ,&nbsp;Shi Yun ,&nbsp;I. Yu Buravlev ,&nbsp;E.K. Papynov","doi":"10.1016/j.jpcs.2025.112804","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates ZnFe<sub>2</sub>O<sub>4</sub>-based ceramic materials synthesized via three controlled chemical methods (sol-gel, mechanochemical, and coprecipitation) and consolidated by spark plasma sintering (SPS) at 1000–1100 °C for energy storage applications. Comprehensive characterization revealed that coprecipitation-derived materials exhibit the smallest crystallite size (56 nm) and highest specific surface area (54 m<sup>2</sup>/g) with uniform mesoporous structure. Sol-gel synthesis method proved to be optimal for obtaining ceramics, as samples consolidated at 1100 °C exhibited the best electrochemical performance with capacitance reaching 0.02–0.03 F/g due to their favorable phase composition and surface defect structure. The materials also exhibited additional magnetic functionality (remanent magnetization up to 3.94 emu/g), suggesting potential for integrated energy storage devices. These findings contribute to the development of environmentally friendly ceramic materials for next-generation energy storage applications, offering a lead-free alternative to conventional capacitor materials.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112804"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnFe2O4 controlled synthesis: key to improving properties of functional ceramic materials for energy storage applications\",\"authors\":\"O.O. Shichalin ,&nbsp;N.P. Ivanov ,&nbsp;A.I. Seroshtan ,&nbsp;K.V. Nadaraia ,&nbsp;T.L. Simonenko ,&nbsp;K.A. Rogachev ,&nbsp;P.A. Marmaza ,&nbsp;A.R. Zaikova ,&nbsp;M.A. Sin'kova ,&nbsp;G.V. Ikhtonov ,&nbsp;A.V. Pogodaev ,&nbsp;E.S. Kolodeznikov ,&nbsp;V. Yu Mayorov ,&nbsp;E.V. Shchitovskaya ,&nbsp;A.V. Ognev ,&nbsp;A.S. Samardak ,&nbsp;Shi Yun ,&nbsp;I. Yu Buravlev ,&nbsp;E.K. Papynov\",\"doi\":\"10.1016/j.jpcs.2025.112804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates ZnFe<sub>2</sub>O<sub>4</sub>-based ceramic materials synthesized via three controlled chemical methods (sol-gel, mechanochemical, and coprecipitation) and consolidated by spark plasma sintering (SPS) at 1000–1100 °C for energy storage applications. Comprehensive characterization revealed that coprecipitation-derived materials exhibit the smallest crystallite size (56 nm) and highest specific surface area (54 m<sup>2</sup>/g) with uniform mesoporous structure. Sol-gel synthesis method proved to be optimal for obtaining ceramics, as samples consolidated at 1100 °C exhibited the best electrochemical performance with capacitance reaching 0.02–0.03 F/g due to their favorable phase composition and surface defect structure. The materials also exhibited additional magnetic functionality (remanent magnetization up to 3.94 emu/g), suggesting potential for integrated energy storage devices. These findings contribute to the development of environmentally friendly ceramic materials for next-generation energy storage applications, offering a lead-free alternative to conventional capacitor materials.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"205 \",\"pages\":\"Article 112804\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002562\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002562","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过三种受控化学方法(溶胶-凝胶法、机械化学法和共沉淀法)合成znfe2o4基陶瓷材料,并在1000-1100℃下进行火花等离子烧结(SPS)固化,用于储能应用。综合表征表明,共沉淀衍生材料具有最小的晶粒尺寸(56 nm)和最高的比表面积(54 m2/g),具有均匀的介孔结构。溶胶-凝胶法是获得陶瓷的最佳方法,在1100℃固结的样品由于其良好的相组成和表面缺陷结构,表现出最佳的电化学性能,电容达到0.02-0.03 F/g。这些材料还表现出额外的磁性功能(剩余磁化强度高达3.94 emu/g),表明集成储能设备的潜力。这些发现有助于开发用于下一代储能应用的环保陶瓷材料,为传统电容器材料提供无铅替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZnFe2O4 controlled synthesis: key to improving properties of functional ceramic materials for energy storage applications
This study investigates ZnFe2O4-based ceramic materials synthesized via three controlled chemical methods (sol-gel, mechanochemical, and coprecipitation) and consolidated by spark plasma sintering (SPS) at 1000–1100 °C for energy storage applications. Comprehensive characterization revealed that coprecipitation-derived materials exhibit the smallest crystallite size (56 nm) and highest specific surface area (54 m2/g) with uniform mesoporous structure. Sol-gel synthesis method proved to be optimal for obtaining ceramics, as samples consolidated at 1100 °C exhibited the best electrochemical performance with capacitance reaching 0.02–0.03 F/g due to their favorable phase composition and surface defect structure. The materials also exhibited additional magnetic functionality (remanent magnetization up to 3.94 emu/g), suggesting potential for integrated energy storage devices. These findings contribute to the development of environmentally friendly ceramic materials for next-generation energy storage applications, offering a lead-free alternative to conventional capacitor materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信