三材料栅极纳米片mosfet通道电位和阈值电压的准三维分析框架

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
E. Rajalakshmi , N.B. Balamurugan , M. Suguna , D. Sriram Kumar
{"title":"三材料栅极纳米片mosfet通道电位和阈值电压的准三维分析框架","authors":"E. Rajalakshmi ,&nbsp;N.B. Balamurugan ,&nbsp;M. Suguna ,&nbsp;D. Sriram Kumar","doi":"10.1016/j.mejo.2025.106710","DOIUrl":null,"url":null,"abstract":"<div><div>Nanosheet MOSFETs is an excellent replacement for FinFETs for sub-5 nm technology nodes because of their outstanding electrostatic control provided by their gate-all-around structure. A novel Triple Material Gate nanosheet MOSFETs is presented in this work. For the first time, an analytical model for the threshold voltage and channel potential is derived using a quasi-3D approach. Through consideration of both vertical and a lateral potential fluctuation, the proposed model effectively depicts electrostatic behavior. Ballistic transport theory is utilized to assess subthreshold swing and threshold voltage characteristics, improving the accuracy of predictions. The results demonstrate an 11.3 % drop in subthreshold swing and a 10 % reduction in threshold voltage, assuring improved device performance. The proposed TMG-NS-MOSFETs achieve a high current ON and OFF ratio of 2.4 × 10<sup>6</sup> at 20 nm gate length, ensuring excellent switching performance. A significant correlation is confirmed via validation against TCAD simulations, proving the model's dependability. This novel analytical approach advances the modeling of semiconductor devices by offering better insights into nanosheet MOSFETs electrostatics. Based on the results, new nanosheet MOSFETs designs can be incorporated into ultra-low power, high performance microelectronic circuits of the future.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106710"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new quasi-3D analytical framework for channel potential and threshold voltage in triple material gate nanosheet MOSFETs\",\"authors\":\"E. Rajalakshmi ,&nbsp;N.B. Balamurugan ,&nbsp;M. Suguna ,&nbsp;D. Sriram Kumar\",\"doi\":\"10.1016/j.mejo.2025.106710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanosheet MOSFETs is an excellent replacement for FinFETs for sub-5 nm technology nodes because of their outstanding electrostatic control provided by their gate-all-around structure. A novel Triple Material Gate nanosheet MOSFETs is presented in this work. For the first time, an analytical model for the threshold voltage and channel potential is derived using a quasi-3D approach. Through consideration of both vertical and a lateral potential fluctuation, the proposed model effectively depicts electrostatic behavior. Ballistic transport theory is utilized to assess subthreshold swing and threshold voltage characteristics, improving the accuracy of predictions. The results demonstrate an 11.3 % drop in subthreshold swing and a 10 % reduction in threshold voltage, assuring improved device performance. The proposed TMG-NS-MOSFETs achieve a high current ON and OFF ratio of 2.4 × 10<sup>6</sup> at 20 nm gate length, ensuring excellent switching performance. A significant correlation is confirmed via validation against TCAD simulations, proving the model's dependability. This novel analytical approach advances the modeling of semiconductor devices by offering better insights into nanosheet MOSFETs electrostatics. Based on the results, new nanosheet MOSFETs designs can be incorporated into ultra-low power, high performance microelectronic circuits of the future.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"161 \",\"pages\":\"Article 106710\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001596\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001596","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

纳米片mosfet是sub- 5nm技术节点finfet的优秀替代品,因为其栅极全方位结构提供了出色的静电控制。本文提出了一种新型的三层材料栅极纳米片mosfet。本文首次采用准三维方法推导了阈值电压和通道电位的解析模型。通过考虑垂直和横向电位波动,该模型有效地描述了静电行为。利用弹道输运理论评估亚阈值摆幅和阈值电压特性,提高了预测的准确性。结果表明,亚阈值摆幅下降了11.3%,阈值电压降低了10%,确保了器件性能的提高。所提出的tmg - ns - mosfet在20nm栅极长度下实现2.4 × 106的高电流ON / OFF比,确保了优异的开关性能。通过对TCAD仿真的验证,证实了显著的相关性,证明了模型的可靠性。这种新颖的分析方法通过提供对纳米片mosfet静电的更好见解,推进了半导体器件的建模。基于这些结果,新的纳米片mosfet设计可以被整合到未来的超低功耗、高性能微电子电路中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new quasi-3D analytical framework for channel potential and threshold voltage in triple material gate nanosheet MOSFETs
Nanosheet MOSFETs is an excellent replacement for FinFETs for sub-5 nm technology nodes because of their outstanding electrostatic control provided by their gate-all-around structure. A novel Triple Material Gate nanosheet MOSFETs is presented in this work. For the first time, an analytical model for the threshold voltage and channel potential is derived using a quasi-3D approach. Through consideration of both vertical and a lateral potential fluctuation, the proposed model effectively depicts electrostatic behavior. Ballistic transport theory is utilized to assess subthreshold swing and threshold voltage characteristics, improving the accuracy of predictions. The results demonstrate an 11.3 % drop in subthreshold swing and a 10 % reduction in threshold voltage, assuring improved device performance. The proposed TMG-NS-MOSFETs achieve a high current ON and OFF ratio of 2.4 × 106 at 20 nm gate length, ensuring excellent switching performance. A significant correlation is confirmed via validation against TCAD simulations, proving the model's dependability. This novel analytical approach advances the modeling of semiconductor devices by offering better insights into nanosheet MOSFETs electrostatics. Based on the results, new nanosheet MOSFETs designs can be incorporated into ultra-low power, high performance microelectronic circuits of the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信