E. Rajalakshmi , N.B. Balamurugan , M. Suguna , D. Sriram Kumar
{"title":"三材料栅极纳米片mosfet通道电位和阈值电压的准三维分析框架","authors":"E. Rajalakshmi , N.B. Balamurugan , M. Suguna , D. Sriram Kumar","doi":"10.1016/j.mejo.2025.106710","DOIUrl":null,"url":null,"abstract":"<div><div>Nanosheet MOSFETs is an excellent replacement for FinFETs for sub-5 nm technology nodes because of their outstanding electrostatic control provided by their gate-all-around structure. A novel Triple Material Gate nanosheet MOSFETs is presented in this work. For the first time, an analytical model for the threshold voltage and channel potential is derived using a quasi-3D approach. Through consideration of both vertical and a lateral potential fluctuation, the proposed model effectively depicts electrostatic behavior. Ballistic transport theory is utilized to assess subthreshold swing and threshold voltage characteristics, improving the accuracy of predictions. The results demonstrate an 11.3 % drop in subthreshold swing and a 10 % reduction in threshold voltage, assuring improved device performance. The proposed TMG-NS-MOSFETs achieve a high current ON and OFF ratio of 2.4 × 10<sup>6</sup> at 20 nm gate length, ensuring excellent switching performance. A significant correlation is confirmed via validation against TCAD simulations, proving the model's dependability. This novel analytical approach advances the modeling of semiconductor devices by offering better insights into nanosheet MOSFETs electrostatics. Based on the results, new nanosheet MOSFETs designs can be incorporated into ultra-low power, high performance microelectronic circuits of the future.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106710"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new quasi-3D analytical framework for channel potential and threshold voltage in triple material gate nanosheet MOSFETs\",\"authors\":\"E. Rajalakshmi , N.B. Balamurugan , M. Suguna , D. Sriram Kumar\",\"doi\":\"10.1016/j.mejo.2025.106710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanosheet MOSFETs is an excellent replacement for FinFETs for sub-5 nm technology nodes because of their outstanding electrostatic control provided by their gate-all-around structure. A novel Triple Material Gate nanosheet MOSFETs is presented in this work. For the first time, an analytical model for the threshold voltage and channel potential is derived using a quasi-3D approach. Through consideration of both vertical and a lateral potential fluctuation, the proposed model effectively depicts electrostatic behavior. Ballistic transport theory is utilized to assess subthreshold swing and threshold voltage characteristics, improving the accuracy of predictions. The results demonstrate an 11.3 % drop in subthreshold swing and a 10 % reduction in threshold voltage, assuring improved device performance. The proposed TMG-NS-MOSFETs achieve a high current ON and OFF ratio of 2.4 × 10<sup>6</sup> at 20 nm gate length, ensuring excellent switching performance. A significant correlation is confirmed via validation against TCAD simulations, proving the model's dependability. This novel analytical approach advances the modeling of semiconductor devices by offering better insights into nanosheet MOSFETs electrostatics. Based on the results, new nanosheet MOSFETs designs can be incorporated into ultra-low power, high performance microelectronic circuits of the future.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"161 \",\"pages\":\"Article 106710\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001596\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001596","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A new quasi-3D analytical framework for channel potential and threshold voltage in triple material gate nanosheet MOSFETs
Nanosheet MOSFETs is an excellent replacement for FinFETs for sub-5 nm technology nodes because of their outstanding electrostatic control provided by their gate-all-around structure. A novel Triple Material Gate nanosheet MOSFETs is presented in this work. For the first time, an analytical model for the threshold voltage and channel potential is derived using a quasi-3D approach. Through consideration of both vertical and a lateral potential fluctuation, the proposed model effectively depicts electrostatic behavior. Ballistic transport theory is utilized to assess subthreshold swing and threshold voltage characteristics, improving the accuracy of predictions. The results demonstrate an 11.3 % drop in subthreshold swing and a 10 % reduction in threshold voltage, assuring improved device performance. The proposed TMG-NS-MOSFETs achieve a high current ON and OFF ratio of 2.4 × 106 at 20 nm gate length, ensuring excellent switching performance. A significant correlation is confirmed via validation against TCAD simulations, proving the model's dependability. This novel analytical approach advances the modeling of semiconductor devices by offering better insights into nanosheet MOSFETs electrostatics. Based on the results, new nanosheet MOSFETs designs can be incorporated into ultra-low power, high performance microelectronic circuits of the future.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.