兔小腿肌肉组织的年龄相关特性-力学与微观结构之间的关系

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Markus Böl , Kay Leichsenring , Steven Kutschke , Fabian Walter , Tobias Siebert
{"title":"兔小腿肌肉组织的年龄相关特性-力学与微观结构之间的关系","authors":"Markus Böl ,&nbsp;Kay Leichsenring ,&nbsp;Steven Kutschke ,&nbsp;Fabian Walter ,&nbsp;Tobias Siebert","doi":"10.1016/j.jmbbm.2025.107008","DOIUrl":null,"url":null,"abstract":"<div><div>In order to meet the requirements of body weight and height and the associated changing tasks and movement patterns during the growth of living bodies, significant changes in the skeletal musculature occur during this phase. In this study, the age-dependent (between 21 and 100 days) mechanical and microstructural tissue behaviour of the calf musculature, consisting of soleus muscles (SOL), gastrocnemius muscles (GAS) and plantaris muscles (PLA), was examined. To this end, cubic muscle tissue samples were examined using axial and semi-confined compression experiments. In addition, the essential muscle tissue components (muscle fibres, extracellular matrix, remaining components) were analysed. In a final step, these results were linked to morphological properties of the animals and muscles (animal mass, muscle mass, tibia length). Interestingly, the mechanical properties of the individual muscle types hardly differ from each other during growth, while both the morphological and microstructural properties change significantly. Thus, a clear increase of all morphological parameters (animal mass by 850%, muscle mass by 1000% (SOL), 1183% (GAS) and 1050% (PLA), tibia length by 235%) can be seen. In comparison, the microstructural parameters show a less consistent trend. The proportion of muscle fibres in the tissue cross-section increases by about 138% in the SOL, whereas the fibre proportion in both the GAS and PLA increases by only 109%. Consequently, the ECM proportion in the tissue cross-section decreases by 48%, 58% and 52% for SOL, GAS and PLA. Overall, the data obtained her e provides a deeper understanding of muscle growth and, in particular, of different muscle types that have different functions inside the calf. On the other hand, these data represent a good and comprehensive basis for later model developments.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 107008"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-dependent properties of the rabbit calf musculature — Relationship between mechanic and microstructure\",\"authors\":\"Markus Böl ,&nbsp;Kay Leichsenring ,&nbsp;Steven Kutschke ,&nbsp;Fabian Walter ,&nbsp;Tobias Siebert\",\"doi\":\"10.1016/j.jmbbm.2025.107008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to meet the requirements of body weight and height and the associated changing tasks and movement patterns during the growth of living bodies, significant changes in the skeletal musculature occur during this phase. In this study, the age-dependent (between 21 and 100 days) mechanical and microstructural tissue behaviour of the calf musculature, consisting of soleus muscles (SOL), gastrocnemius muscles (GAS) and plantaris muscles (PLA), was examined. To this end, cubic muscle tissue samples were examined using axial and semi-confined compression experiments. In addition, the essential muscle tissue components (muscle fibres, extracellular matrix, remaining components) were analysed. In a final step, these results were linked to morphological properties of the animals and muscles (animal mass, muscle mass, tibia length). Interestingly, the mechanical properties of the individual muscle types hardly differ from each other during growth, while both the morphological and microstructural properties change significantly. Thus, a clear increase of all morphological parameters (animal mass by 850%, muscle mass by 1000% (SOL), 1183% (GAS) and 1050% (PLA), tibia length by 235%) can be seen. In comparison, the microstructural parameters show a less consistent trend. The proportion of muscle fibres in the tissue cross-section increases by about 138% in the SOL, whereas the fibre proportion in both the GAS and PLA increases by only 109%. Consequently, the ECM proportion in the tissue cross-section decreases by 48%, 58% and 52% for SOL, GAS and PLA. Overall, the data obtained her e provides a deeper understanding of muscle growth and, in particular, of different muscle types that have different functions inside the calf. On the other hand, these data represent a good and comprehensive basis for later model developments.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"168 \",\"pages\":\"Article 107008\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125001249\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了适应生物生长过程中体重和身高的要求以及与之相关的任务和运动模式的变化,骨骼肌在这一阶段发生了显著的变化。在这项研究中,研究了由比目鱼肌(SOL)、腓肠肌(GAS)和足底肌(PLA)组成的小腿肌肉组织的年龄依赖性(21至100天)机械和微观结构组织行为。为此,采用轴向和半受限压缩实验对立方肌肉组织样本进行了检测。此外,还分析了必需的肌肉组织成分(肌纤维、细胞外基质、剩余成分)。在最后一步,这些结果与动物和肌肉的形态学特性(动物质量,肌肉质量,胫骨长度)有关。有趣的是,在生长过程中,单个肌肉类型的力学特性几乎没有差异,而形态和微观结构特性都发生了显著变化。因此,可以看到所有形态学参数明显增加(动物质量增加850%,肌肉质量增加1000% (SOL), 1183% (GAS)和1050% (PLA),胫骨长度增加235%)。相比之下,微观结构参数呈现出不太一致的趋势。在SOL中,肌肉纤维在组织截面中的比例增加了约138%,而在GAS和PLA中,纤维比例仅增加了109%。因此,SOL、GAS和PLA在组织截面中的ECM比例分别降低了48%、58%和52%。总的来说,获得的数据提供了对肌肉生长的更深入的了解,特别是对小腿内部具有不同功能的不同肌肉类型的了解。另一方面,这些数据为以后的模型开发提供了良好和全面的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Age-dependent properties of the rabbit calf musculature — Relationship between mechanic and microstructure
In order to meet the requirements of body weight and height and the associated changing tasks and movement patterns during the growth of living bodies, significant changes in the skeletal musculature occur during this phase. In this study, the age-dependent (between 21 and 100 days) mechanical and microstructural tissue behaviour of the calf musculature, consisting of soleus muscles (SOL), gastrocnemius muscles (GAS) and plantaris muscles (PLA), was examined. To this end, cubic muscle tissue samples were examined using axial and semi-confined compression experiments. In addition, the essential muscle tissue components (muscle fibres, extracellular matrix, remaining components) were analysed. In a final step, these results were linked to morphological properties of the animals and muscles (animal mass, muscle mass, tibia length). Interestingly, the mechanical properties of the individual muscle types hardly differ from each other during growth, while both the morphological and microstructural properties change significantly. Thus, a clear increase of all morphological parameters (animal mass by 850%, muscle mass by 1000% (SOL), 1183% (GAS) and 1050% (PLA), tibia length by 235%) can be seen. In comparison, the microstructural parameters show a less consistent trend. The proportion of muscle fibres in the tissue cross-section increases by about 138% in the SOL, whereas the fibre proportion in both the GAS and PLA increases by only 109%. Consequently, the ECM proportion in the tissue cross-section decreases by 48%, 58% and 52% for SOL, GAS and PLA. Overall, the data obtained her e provides a deeper understanding of muscle growth and, in particular, of different muscle types that have different functions inside the calf. On the other hand, these data represent a good and comprehensive basis for later model developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信