类胡萝卜素吸收、分布和消除的最新进展

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wafa'a Hajeer , Amparo Blanco , Anthony P. Miller , Jaume Amengual
{"title":"类胡萝卜素吸收、分布和消除的最新进展","authors":"Wafa'a Hajeer ,&nbsp;Amparo Blanco ,&nbsp;Anthony P. Miller ,&nbsp;Jaume Amengual","doi":"10.1016/j.bbalip.2025.159619","DOIUrl":null,"url":null,"abstract":"<div><div>Carotenoids are a class of pigments with antioxidant properties synthesized by photosynthetic and heterotrophic organisms. Humans can store carotenoids in their intact form or cleave them enzymatically to apocarotenoids such as vitamin A, a hormone-like nutrient with crucial roles in gene expression and vision. Clinical and preclinical studies suggest that the consumption of diets rich in carotenoids attenuate cardiometabolic diseases, some types of cancer, neurodegenerative disorders, and inflammatory conditions. The bioactive properties of carotenoids depend, at least in part, on their accumulation in target tissues. However, the pathways that drive carotenoid absorption, delivery, and accumulation in tissues remain largely uncharacterized. This review provides a critical overview of the experimental models utilized to monitor carotenoid homeostasis in mammals. We also delve into recent findings concerning carotenoid intestinal uptake, bodily distribution, cellular uptake, and intracellular trafficking. Finally, we discuss the physiological relevance of a fecal carotenoid elimination pathway that operates independently of carotenoid enzymatic cleavage. Establishing the players governing carotenoid biodistribution and elimination is essential to maximize the bioactive properties of carotenoids in humans to prevent chronic diseases.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 5","pages":"Article 159619"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in carotenoid absorption, distribution, and elimination\",\"authors\":\"Wafa'a Hajeer ,&nbsp;Amparo Blanco ,&nbsp;Anthony P. Miller ,&nbsp;Jaume Amengual\",\"doi\":\"10.1016/j.bbalip.2025.159619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carotenoids are a class of pigments with antioxidant properties synthesized by photosynthetic and heterotrophic organisms. Humans can store carotenoids in their intact form or cleave them enzymatically to apocarotenoids such as vitamin A, a hormone-like nutrient with crucial roles in gene expression and vision. Clinical and preclinical studies suggest that the consumption of diets rich in carotenoids attenuate cardiometabolic diseases, some types of cancer, neurodegenerative disorders, and inflammatory conditions. The bioactive properties of carotenoids depend, at least in part, on their accumulation in target tissues. However, the pathways that drive carotenoid absorption, delivery, and accumulation in tissues remain largely uncharacterized. This review provides a critical overview of the experimental models utilized to monitor carotenoid homeostasis in mammals. We also delve into recent findings concerning carotenoid intestinal uptake, bodily distribution, cellular uptake, and intracellular trafficking. Finally, we discuss the physiological relevance of a fecal carotenoid elimination pathway that operates independently of carotenoid enzymatic cleavage. Establishing the players governing carotenoid biodistribution and elimination is essential to maximize the bioactive properties of carotenoids in humans to prevent chronic diseases.</div></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1870 5\",\"pages\":\"Article 159619\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198125000277\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198125000277","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类胡萝卜素是一类由光合作用和异养生物合成的具有抗氧化特性的色素。人类可以将类胡萝卜素以完整的形式储存起来,也可以将其酶切成类胡萝卜素,如维生素A,这是一种类似激素的营养物质,对基因表达和视力起着至关重要的作用。临床和临床前研究表明,食用富含类胡萝卜素的饮食可以减轻心脏代谢疾病、某些类型的癌症、神经退行性疾病和炎症。类胡萝卜素的生物活性至少部分取决于它们在靶组织中的积累。然而,驱动类胡萝卜素在组织中的吸收、传递和积累的途径在很大程度上仍然是未知的。本文综述了用于监测哺乳动物类胡萝卜素稳态的实验模型。我们还深入研究了最近关于类胡萝卜素肠道摄取、身体分布、细胞摄取和细胞内运输的发现。最后,我们讨论了独立于类胡萝卜素酶裂解作用的粪便类胡萝卜素消除途径的生理相关性。建立控制类胡萝卜素生物分布和消除的参与者对于最大限度地发挥类胡萝卜素在人类中的生物活性特性以预防慢性疾病至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in carotenoid absorption, distribution, and elimination
Carotenoids are a class of pigments with antioxidant properties synthesized by photosynthetic and heterotrophic organisms. Humans can store carotenoids in their intact form or cleave them enzymatically to apocarotenoids such as vitamin A, a hormone-like nutrient with crucial roles in gene expression and vision. Clinical and preclinical studies suggest that the consumption of diets rich in carotenoids attenuate cardiometabolic diseases, some types of cancer, neurodegenerative disorders, and inflammatory conditions. The bioactive properties of carotenoids depend, at least in part, on their accumulation in target tissues. However, the pathways that drive carotenoid absorption, delivery, and accumulation in tissues remain largely uncharacterized. This review provides a critical overview of the experimental models utilized to monitor carotenoid homeostasis in mammals. We also delve into recent findings concerning carotenoid intestinal uptake, bodily distribution, cellular uptake, and intracellular trafficking. Finally, we discuss the physiological relevance of a fecal carotenoid elimination pathway that operates independently of carotenoid enzymatic cleavage. Establishing the players governing carotenoid biodistribution and elimination is essential to maximize the bioactive properties of carotenoids in humans to prevent chronic diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信